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Abstract—More and more app developers use the packing
services (or packers) to prevent attackers from reverse
engineering and modifying the executable (or Dex files) of their
apps. At the same time, malware authors also use the packers
to hide the malicious component and evade the signature-based
detection. Although there are a few recent studies on unpacking
Android apps, it has been shown that the evolving packers can
easily circumvent them because they are not adaptive to the
changes of packers. In this paper, we propose a novel adaptive
approach and develop a new system, named PackerGrind, to
unpack Android apps. We also evaluate PackerGrind with
real packed apps, and the results show that PackerGrind can
successfully reveal the packers’ protection mechanisms and
recover the Dex files with low overhead, showing that our
approach can effectively handle the evolution of packers.

I. INTRODUCTION

With more than 2 million apps on the Google Play, Android

has accounted for around 85% of all smartphone sales to end

users [1]. At the same time, recent reports revealed that 97-99%

of mobile malware runs on Android [2], [3], most of which

are repackaged apps [4]–[7]. They are legitimate apps carrying

malicious components injected by attackers. One root cause

is the lack of binary protections, which is one of theOWASP

mobile top ten risks [8], so that attackers can easily reverse

engineer the apps and tamper their code.

To protect apps from being tampered and reverse engineered,

a number of app packing services (or packers) emerge [9],

which conceal and obfuscate the real code (i.e., Dex files) and

prevent others from obtaining them [10], [11]. Unfortunately,

attackers also utilize packers to hide malware for evading the

signature-based detection and impeding the investigation of

their malicious behaviors [12]. A recent report from Symantec

reveals that the number of packed Android malware has

increased from 10% to 25% [13]. Therefore, researchers

proposed a few unpacking approaches recently to recover the

Dex files from packed apps in order to facilitate the analysis

of mobile malware [10], [11].

However, the arms race between packers and unpacking

tools never ends. The latest version of packers could easily

evade those unpacking tools. The key issue lies in the one-pass

processing strategy adopted by the unpacking tools. In other

words, they are not adaptive to the evolution of packers. In this

paper, we propose a new adaptive approach, which employs

an iterative process, to recover the Dex files from packed apps,

and develop a new system named PackerGrind to automate

most steps in the process.

§ The corresponding author.

Our iterative process consists of three major tasks including

(1) monitoring, which captures how packed apps work,

especially how it prepares the real code for execution, and then

generates tracking reports, based on which we can determine

the data collection points; (2) recovery, which collects the

pieces of data in Dex files at the selected data collection points

and reconstructs Dex files; (3) analysis, which determines

whether new data collection points are needed to recover Dex

files. Automating this process is non-trivial because we need

to address two challenging research questions:

RQ1: How to conduct cross-layer profiling of packed apps’
behaviors in a smartphone?
RQ2: How to effectively recover the Dex files of apps packed
by different packers?

Answering RQ1 needs a system that can perform cross-layer

monitoring of an app’s behaviors and run in real smartphones.

Note that with the support of Android framework, apps run

in the runtime, which was the Dalvik Virtual Machine (DVM)

before Android 5.0 and became the new Android runtime

(ART) afterwards, and the runtime is on top of the modified

Linux. Packed apps usually exploit the features of the Java

language, Android framework, and native libs/instructions to

hide the real code, detect emulator, and prohibit debugging

[14]. Existing dynamic analysis systems for monitoring apps

cannot address RQ1, because they either rely on emulator (e.g.,

QEMU) [15], [16] and debugging techniques [17], [18] or lack

of the support of cross-layer profiling [16], [19]. To tackle

RQ1, we propose and develop a novel cross-layer monitoring

component for PackerGrind. By exploiting dynamic binary

translation [20], it collects information from the runtime, the

system, and the instruction layers and runs in smartphones.

Moreover, it supports both DVM and ART.

Existing unpackers for Android apps cannot fully address

RQ2 because of their one-pass processing strategy. To approach

RQ2, we first identify basic Dex data collection points by

scrutinizing how DVM and ART load and run apps. Since

different packers employ various protection methods to modify

the code and data in memory dynamically, PackerGrind
provides detailed tracking reports as well as suggested criteria

to recognize the protection patterns. Moreover, PackerGrind
conducts static analysis on the Dex file obtained at each run

to facilitate users to identify new data collection points if

needed. Although this step might need manual inspection, the

detailed information and scripts provided by PackerGrind could

alleviate the workload. PackerGrind also has built-in rules

to automatically unpack apps protected by existing packers
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accessible to us. After that, PackerGrind will re-run the packed

app, collect Dex data at selected collection points, and finally

reconstruct the Dex file.

In summary, our major contributions include:

• We propose a new iterative process to unpack Android apps.

This process as well as the new system, PackerGrind, is

adaptive to the evolution of packers.

• We design PackerGrind that automates most steps in the

iterative process. It can conduct cross-layer monitoring

and Dex file recovering in real smartphones. Moreover,

it supports both DVM and ART. To our best knowledge, it is

the first system that can address the above two challenging

research questions simultaneously.

• We implement PackerGrind with 21.3K lines of C/C++ code

(not include Valgrind) and 2.5K lines of Python code, and

compare it with the state-of-the-art unpacking tools with

real apps packed by popular packers. The results show that

PackerGrind can unpack all these apps with low overhead

whereas DexHunter [10] recovered a few and Android-

unpacker [21] unpacked none.

The rest of the paper is organized as follows. Section

II introduces background knowledge and a motivating

example. Section III describes the basic Dex data collection

points. Section IV details the design and implementation of

PackerGrind and Section V reports the experimental results.

After discussing the limitations of PackerGrind and future work

in Section VI, we introduce the related work and conclude the

paper in Section VII and Section VIII, respectively.

II. BACKGROUND

A. Dex File

The bytecode of an Android app is contained in the

Dex file which is a highly structured data file consist-

ing of different Dex data items [22](e.g., proto_id_item,

code_data_item). A Dex file has three major sections in-

cluding header section, data identifiers section, and data
section. The header section includes a summary of the Dex

file (e.g., checksum, size, and offsets). The data identifiers
section contains 6 identification lists for defined classes,

namely, string_ids, type_ids, proto_ids, field_ids,

method_ids, and class_defs, each of which contains

multiple items. For example, string_id_item contains

the offset from the start of the Dex file to the corre-

sponding string_data_item. The data section contains

the information related to bytecode, including map_list,

type_list, class_data_items, code_data_items,

debug_info_items, encoded_array_items, and four an-

notation data items.

B. Android App Packing

Packers usually protect apps’ code from three aspects,

namely, hiding Dex files, impeding the dumping of Dex files

in memory, and hindering the reverse-engineering of Dex files.

Hiding Dex files. Packers often use three approaches to hide

Dex files. (1) Dex file modification. Packed apps use native

code to modify Dex files in the memory when the app is

running. For example, apps packed by Baidu packer in 2015

fill a special method with valid instructions just before the

method is called and erase them after execution. PackerGrind
can capture such behaviors and dump the correct instructions

at the right moment. (2) Dynamic class loading. Packers put

the bytecode of selected functions in separated Dex files, and

load them when the functions are invoked. They even encrypt

the Dex files and decrypt them before loading the required

classes. PackerGrind can dump the Dex files after they are

loaded because it traces the runtime’s functions. (3) Native
method. Packers could turn the selected Dex functions into

native methods and then invoke them through Java native

interface (JNI) from the Dex file. Although PackerGrind is not

designed to reverse engineer the native code for regenerating

the bytecode, it can still provide useful information about the

native methods thanks to its cross-layer monitoring component.

Impeding the dumping of Dex files. Packers usually employ

three approaches to prevent unpackers from dumping the real

code in memory. (1) Emulator detection. Since many dynamic

analysis systems rely on Android emulator, packers employ

advanced techniques [14] to determine whether a packed app

is running in an emulator. If so, the app will exit. PackerGrind
does not rely on the emulator. Instead, it exploits dynamic

binary translation [20] to perform cross-layer monitoring and

recovers Dex files. (2) Anti-debug. If an unpacker attaches

to the packed apps as a debugger, it can monitor the apps

and obtain the Dex files. To impede such method, the packed

apps often launch multiple threads and let one thread attach to

another using ptrace, because a process can only be attached

by one process. PackerGrind does not use this approach. (3)
Hooking. To prevent unpackers from accessing and dumping

the Dex files in memory, packed apps often hook the functions

related to file and memory operations to prohibit unpackers

from using them. PackerGrind can disable these hooks.

Anti reverse-engineering of Dex files. Packers commonly

employ various techniques (e.g., obfuscation [23], etc.) to raise

the bar for understanding the internal logics through static code

analysis. Handling them is out of the scope of PackerGrind.

C. Motivating Example

Existing unpackers are not adaptive to the changes of packers,

and hence can be easily circumvented. In particular, they

usually perform one-pass processing based on the developer’s

knowledge for obtaining the Dex files. Therefore, packers can

modify their behaviors accordingly to defeat such unpackers.

We argue that unpackers should be adaptive to the changes of

packers by monitoring and learn their behaviors.

We use an app packed by Baidu packer (in DB-15) [24] as

a motivating example. As show in Fig. 1, the original code of

onCreate() in MainActivity is replaced by those at Line 23-26,

and onCreate001() is empty and called between two JNI methods

(i.e., A.d() and A.e()). By monitoring the packed app, we find

that when A.d() is invoked, it fills onCreate001() with correct

instructions, which will be erased after A.e() is called.
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The state-of-the-art unpackers (i.e, DexHunter [10] and

AppSpear [11]) cannot obtain the instructions in onCreate001()
effectively. DexHunter collects the Dex data in dvmDefineClass().
However, when this function is called, the correct instructions

have not been written to onCreate001() yet, and thus DexHunter

misses them. Similarly, AppSpear assumes that DVM’s parsing

methods (e.g., dexGetCode()) always provide expected results.

However, in this example, dexGetCode() can only obtain the

right instructions of onCreate001() when it is invoked between

A.d() and A.e(). In other words, AppSpear cannot get the

correct results if it misses the right moment. Since DexHunter

and AppSpear are implemented within the runtime, they

cannot monitor packed apps’ behaviors at the system and

the instruction levels to determine the right moments.

22 public void onCreate(Bundle bundle) { 
23   String str = "LXXX;->onCreate001(Landroid/os/Bundle;)V"; 
24   A.d(str);  
25   onCreate001(bundle);  
26   A.e(str);  
27 }  
28 private void onCreate001(Bundle savedInstanceState) { 
29 }  

Fig. 1: onCreate() method of the app packed by the Baidu
packer of DB-15.

PackerGrind can address this issue because it iteratively

monitors packed apps at different layers, facilitates the

determination of collection points, and recovers the Dex files.

By analyzing the Dex file obtained in the first run, we can

learn that the instructions of onCreate001() are modified during

execution. According to the tracking report, we know that A.d()
is called before onCreate001() to fill the instructions and A.e() is

invoked after onCreate001() to erase them. Moreover, as shown

in Fig. 1, the parameters of both method A.d() and A.e() are the

name of onCreate001(). With such information, we add a new

collection point between A.d() and A.e(), and then PackerGrind
can reconstruct the correct Dex file automatically.

III. BASIC DEX DATA COLLECTION POINTS

As shown in Fig. 2, we divide the process from Dex files

loading to method execution into four phrases, namely, parsing

Dex files, loading classes, resolving methods, and executing

methods. Consequently, we define four basic collection points

for DVM and ART, respectively.

Dex File 
Parser

Class 
Loader

Method 
Resolution

Method 
ExecutionPacker

loadMethodFromDex()

DexMethod

Method

ClassObject

dexFileParse()

DexFIle

dvmCallMethodV() / dvmCallMethodA() / dvmInvokeMethod()

dvmInterpret()

Resolve Methods dexReadClassDataMethod()

dexCompareNameDescr
iptorAndMethod()

dexGetCode()

Direct Methods
Virtual Methods

dvmDefineClass()

Fig. 2: The process from Dex file loading to method execution.
A. Dalvik VM (DVM)

Parsing Dex Files. A Dex file can be loaded either from

a file in storage through openDexFileNative() or a memory

space through openDexFile bytearray(). Both methods will call

dexFileParse() to parse the Dex file and return the structure

DexFile to represent this Dex file in runtime, as shown in

Fig. 2. Since DexFile is initialized according to the Dex file

header in dexFileParse(), we select dexFileParse() as the first Dex

data collection point.

Loading Classes. A class can be loaded through

Dalvik dalvik system DexFile defineClassNative(). In this func-

tion, dvmDefineClass() is called to load the class and return

the structure ClassObject that contains the class’s infor-

mation (e.g., fields, methods, etc.). Moreover, the structure

class_def_item is read from the Dex file, and then the struc-

ture class_data_item is parsed from the Dex file according

to its offset in class_def_item. After that, ClassObject

is initialized. Hence, we choose dvmDefineClass() as the second

Dex data collection point.

Resolving Methods. When loading a class, the class loader

will resolve each method to initialize ClassOject according

to class_data_item. During such resolution, the class

loader first obtains DexMethod from the Dex file by calling

dexReadClassDataMethod(). Then, it creates a structure Method

according to DexMethod in LoadMethodFromDex(). During the

initialization of Method, dexCompareNameDexcriptorAndMethod()
is called to check whether it is a finalize method, and

then dexGetCode() is invoked to fetch the code information

from the Dex file to populate Method. Since the symbols

of inline functions and static functions are not exported

in libdvm.so, we let dexCompareNameDexcriptorAndMethod()
instead of dexGetCode() be the third Dex data collection point.

Executing Methods. Native code can invoke Java methods

through Java reflection or JNI reflection using functions like

dvmInvokeMethod(), dvmCallMethodA(), and dvmCallMethodV().
Since they call dvmInterpret() for both fast-interpreter and

portable-interpreter, we select it as the fourth Dex data

collection point.

B. Android Runtime (ART)

During the installation of an app, ART invokes the tool

dex2oat to compile the Dex file to the oat file, which is in

ELF format but contains both the Dalvik bytecode and the

compiled code. If an app without oat file is being launched,

ART performs the same action. ART can execute a method in

the interpreter mode, which is similar to DVM, or the compiled

code mode. By default, if a method has compiled code, ART

runs its compiled code. Otherwise, ART interprets its Dalvik

bytecode. If a packed app uses dex2oat to compile Dex files

containing real code into oat file, PackerGrind obtains the Dex

file according to the arguments passed to dex2oat.

For the methods executed in the interpreter mode,

PackerGrind also has four basic Dex data collection points.

Parsing Dex Files. Similar to DVM, DexFile represents the

Dex file in runtime, which contains the information of classes

and methods. The class constructor of DexFile (i.e., DexFile())
will read the Dex file in memory and parse it similar to

dexFileParse() in DVM. Therefore, we choose DexFile() as the

first Dex data collection point.
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Loading Classes. DefineClass() of class ClassLinker is used

to load and parse each class in the Dex file and return an

instance of class Class to represent the class in runtime. Hence,

we select DefileClass() as the second Dex data collection point.

Resolving Methods. ART uses ArtMethod to represent each

method of a class, and the instance of ArtMethod for a method

is initialized in LoadMethod(). Therefore, we let it be the third

Dex data collection point.

Executing Methods. Invoke() of the class ArtMthod in ART

is invoked when a Java method is called by Java reflection and

JNI reflection. Hence, we select Invoke() as the fourth Dex data

collection point.

IV. PACKERGRIND

A. Overview

Data Collection

Dex reconstruction

Static analysis

Report analysis

Recovery Analysis     

Monitoring

Dex file

Collection points

Fig. 3: The iterative process realized by PackerGrind.

To be adaptive to the evolution of packers, PackerGrind
adopts the iterative process shown in Fig. 3 to recover Dex files.

This process consists of three tasks in each run. More precisely,

when running a packed app in smartphone, PackerGrind
monitors its behaviors from three layers including runtime,

system, and instruction, and generates a tracking report. At

the same time, PackerGrind collects Dex data at specified

collection points and reconstructs Dex files by the end of each

run. Then, it performs static analysis on the recovered Dex

files. Users determine whether new collection points are needed

according to the tracking report and the result of static analysis,

because the basic data collection points described in Section

III may not be enough for PackerGrind to collect all data of

the original Dex file. We propose basic protection patterns

in Section IV-E to help users determine additional collection

points if needed. Based on these patterns, we have identified

all collection points for packers accessible to us as described in

Section V. After adding the new collection points, PackerGrind
will run the process one more time and repeat this procedure

until the Dex file is correctly recovered.

Fig. 4 shows the architecture of PackerGrind. It consists of

three components for finishing the three tasks in the iterative

process. The monitoring component (Section IV-B) tracks

the behavior of packed apps at three layers and generates

the tracking report. The recovery component (Section IV-D)

automatically gathers Dex data at selected collection points

and reconstructs the Dex file. The analysis component (Section

IV-E) performs static analysis on the Dex file dumped at each

run and determines whether new data collection points are

needed. We develop PackerGrind based on Valgrind [20] and

therefore it runs in real smartphone instead of emulator.

PackerGrind

M
o

n
it

o
ri

n
g

Runtime Tracking

Dex File Parsing Class Loading

JNI LoadingJNI Invoking

System Tracking

Memory Management

Memory Copy/Move

Instruction Tracking

StoreG Statement Store Statement

A
n

a
ly

si
s

R
e

c
o

v
e

ry

File Operation

Fig. 4: Architecture of PackerGrind.

B. Monitoring

1) Runtime layer: To locate the structure DexFile, which

represents a Dex file in runtime, and collect Dex data from

the four basic data collection points (Section III), PackerGrind
monitors the arguments and the returns of the selected functions

in Table I using the function wrapping technique [20]. For

example, by wrapping dexFileParse() with the wrapper function

dexFileParse wrapper(), we can obtain the arguments passed to

dexFileParse() and its return.

TABLE I: Wrappers for tracking Dex and DVM related events.

Category Wrapped Functions Tracked Information

Dex Data

dexFileParse() Dex file parsing

dvmClassDefine() Class loading

dexCompareNameDescriptorAndMethod() Method resolution

dvmInterpret(), dvmMterpStdRun() Method execution

dvmCallJNIMethod() JNI invocation

dvmInvokeMethod() Java reflection

dvmCallMethodV(), dvmCallMethodA() JNI reflection

Native Module dvmLoadNativeCode() Native code loading

Table I lists two set of functions. One includes the functions

related to the basic Dex data collection points and the function

dvmCallJNIMethod(), because some packers use native code

to modify Java methods through JNI. Moreover, it contains

the functions related to Java reflection and JNI reflection

(i.e., dvmInvokeMethod(), dvmCallMethodV(), dvmCallMethodA()),
because they are used by some packers to invoke Java methods.

The other set has dvmLoadNativeCode() because it will be called

when System.load() or System.loadLibrary() is used to load native

module. Since native modules allow packed apps to release

or modify the Dex data, we wrap dvmLoadNativeCode() to track

such behaviors.

2) System layer: Packed apps can release and modify the

Dex data in memory by calling system library functions and

system calls through its native module. Since such behaviors

cannot be monitored at the runtime layer, PackerGrind tracks

them at the system layer by wrapping memory management

functions (e.g., allocation, free, mapping, etc.), file operations

(e.g., open, read, write, and close), and data movement functions

(e.g., memcpy(), strcpy(), etc.). It also traces the invocation of

some system calls (e.g., sys map(), sys unmap() and sys protect()),
because they can be used by packed apps to allocate memory,

release memory, and change memory access permissions,

respectively. PackerGrind maintains a surveillance memory

list for the ranges of memory that may be used to store the
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Dex data, and records the operations on them in tracking report.

PackerGrind also wraps some functions for special purposes.

For example, some packers adopt timeout mechanism for

anti-unpacking (e.g., Ijiami). More precisely, if the unpacking

process takes a time longer than the packer’s timeout threshold,

the app crashes. To address this issue, we wrap the system

call sys gettimeofday() to modify the timestamps returned to the

packer so that its timeout mechanism will not be activated.

Users can use PackerGrind to track more functions if necessary.

3) Instruction layer: PackerGrind instruments store instruc-

tions to monitor operations for modifying Dex files, because

packed apps can write and modify Dex data in memory directly

through its native code instead of invoking memory copy or

move functions. PackerGrind skips system libraries, because

no system library functions except memory copy and move

functions, which are wrapped at the system layer, will modify

Dex files. PackerGrind maintains a system library memory

list for the memory regions of system libraries, and uses it to

determine whether an instruction belongs to system libraries.

To monitor memory modifications, PackerGrind inserts

an intermediate representation (IR) of function invocation

statement before Ist_StoreG and Ist_Store statements that

are translated from packed apps’ native code by Valgrind [20].

In this IR statement, the instruction tracking function will be

called to check whether the target address is in the surveillance

memory list. If so, PackerGrind records the target address,

operand value, and instruction address in the tracking report.

C. Tracking report

A tracking report contains three major types of information

and its length depends on the app’s execution time. (1)
Dex file. When a new Dex file represented by DexFile is

found, PackerGrind parses DexFile and records the memory

information about the Dex file (e.g., Dex file header, classes,

methods and codes). (2) Memory modification. PackerGrind
maintains a Dex file list containing the memory ranges of

all Dex files in the runtime. When functions and instructions

for memory modification are identified, PackerGrind checks

whether the target addresses are in the memory range of a

Dex file. If so, the modification information is written to the

tracking report. At the system layer, this information includes

the invoked function, target address, the Dex structure to which

the target address belongs (e.g., Dex header field), and the

value written to the target address. At the instruction layer, this

information includes instruction address, instruction types (i.e.,

Ist_StoreG and Ist_Store), target address, target address

information, and the stored value. (3) Method invocation. At

the runtime layer and the system layer, the invocation and the

return of any wrapped function are logged into the tracking

report with the parameters and the return values.

D. Recovery

It collects the Dex data and reconstructs Dex files.

1) Dex data collection: In each run, PackerGrind starts

collecting Dex data after a DexFile is identified because it

represents a Dex file. Once the Dex file is located through

DexFile, PackerGrind initializes a shadow memory for storing

the collected Dex data items belonging to this Dex file, and

then copies the data items to the shadow memory. When a

new Dex data item is collected, PackerGrind firstly checks

whether the shadow memory for this data item exists. If so,

PackerGrind copies this data item to the shadow memory.

Otherwise, PackerGrind creates a new shadow memory for

this data item, copies it to the shadow memory, and changes

the corresponding offset to this item in the shadow memory.

2) Dex file assembling: After collecting Dex data,

PackerGrind assembles them into a Dex file. Since a packer

can release Dex data in discontinuous memory areas, there

will be more than one shadow memory allocated for storing

the collected Dex data. Therefore, PackerGrind allocates a

continuous memory and assembles the collected Dex data

together to reconstruct Dex files. Specifically, PackerGrind
performs a two-step Dex file construction. First, it divides the

collected Dex data items into different groups according to their

types. For example, PackerGrind groups all class_def_items

together to assemble class_defs. After that, these groups

of data will be put together according to the Dex format. By

doing so, PackerGrind can obtain the offsets of the Dex data

items and the sizes needed for such data structures.

Second, PackerGrind allocates a continuous memory re-

gion and copies the collected data to it starting from their

group offsets. For each data structure, PackerGrind updates

its members according to the offsets of the data structures.

For example, when a class_data_item is copied into the

continuous memory region, we will update the corresponding

class_def_item.class_data_off. PackerGrind will recal-

culate the meta-data of Dex header after all data structures are

copied into the continuous memory region to ensure the valid-

ity of Dex file. Eventually, PackerGrind dumps the memory

region and outputs the Dex file.

E. Analysis

We analyze the dumped Dex file and the tracking report to

achieve three purposes. First, since packed apps usually use

JNI methods (i.e., native code) to dynamically modify Dex files

in memory and the dumped Dex file may contain unexplored

paths to JNI methods, we conduct static bytecode analysis to

look for such paths. Second, we inspect the tracking report

to determine whether new data collection points are needed.

Third, we identify more information about the discovered JNI

methods from the result of cross-layer monitoring.

1) Static bytecode analysis: We employ IntelliDroid [25] to

determine how to trigger the JNI methods in the dumped Dex

files through statical analysis. Given an app and a set of targeted

JNI methods, IntelliDroid can help us find the execution paths

leading to these methods as well as the corresponding input.

Thus, we first extract JNI methods from the Dex files and let

them be the target methods, and then use IntelliDroid to look

for the execution paths leading to them with event handlers as

the entry-points. After that, we drive the app to execute the

target JNI methods following the corresponding paths.
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001 Syscall: open() /data/dalvik-cache/data@app@demo.killerud.gestures-1.apk@classes.dex flag=0x00020000 fd=50  // First dex file is opened and tracking starts 

002 ........ 

003 Invoke: dvmLoadNativeCode() /data/app-lib/demo.killerud.gestures-1/libmobisec.so   // Load the native library named libmobisec.so 

004 Return: dvmLoadNativeCode() /data/app-lib/demo.killerud.gestures-1/libmobisec.so  

005 Invoke: dvmCallJNIMethod() pDexFile=0x05f3ef40 mth: Lcom/ali/mobisecenhance/StubApplication; attachBaseContextIT(VL)      // JNI method attachBaseContextIT(VL) is invoked 

006                Syscall: open() 0x61c6faf0(/data/data/demo.killerud.gestures/files/libmobisecx1.so) flag=0x00020042 fd=54  // File named libmobisecx1.so is opened and file handler is 54 

007                Syscall: mmap() off_0x00000000 -> 0x375b6000-0x375b7a58 flat=rw- prot=0x2 fd=54  // File lbmobisec1.so is mapped to memory range 0x375b6000-0x375b7a58 

008                Invoke:dexFileParse() file: 0x375b6000-0x375b7a58 flag: kDexParseDefault pDexFile=0x00000000  // dexFileParse() is invoked to parse memory range 0x375b6000-0x375b7a58 

009                Return:dexFileParse() file: 0x375b6000-0x375b7a58 flag: kDexParseDefault pDexFile=0x05f44970  // dexFileParse() returns results: pDexFile=0x05f44970 

010                Syscall: close() fd=54  // File lbmobisec1.so is closed 

011                3759DC87: Executable | STORE *(a_0x375b654c) <- v_0x24 | interfacesOff (pDexFile=0x05f44970 ClassIdx=5)  // The interfaceOff (ClassIdx=5) value is modified by native code 

012                3759E1F3: Executable | STORE *(a_0x375b6b2a) <- v_0x80 | class_data_item (pDexFile=0x05f44970 ClassIdx=0)  // The code_data_item of the class (ClassIdx=0) is modified by native code 

013                3759E1F9: Executable | STORE *(a_0x375b6b2b) <- v_0x80 | class_data_item (pDexFile=0x05f44970 ClassIdx=0)  // The code_data_item of the class (ClassIdx=0) is modified by native code 

014                ....... 

015                3759E205: Executable | STORE *(a_0x375b6bc7) <- v_0x80 | class_data_item (pDexFile=0x05f44970 ClassIdx=9)  // The code_data_item of the class (ClassIdx=9) is modified by native code 

016                3759E209: Executable | STORE *(a_0x375b6bc8) <- v_0x00 | class_data_item (pDexFile=0x05f44970 ClassIdx=9)  // The code_data_item of the class (ClassIdx=9) is modified by native code 

017 Return: dvmCallJNIMethod() pDexFile=0x05f3ef40 mth: Lcom/ali/mobisecenhance/StubApplication; attachBaseContextIT(VL)     // JNI method attachBaseContextIT(VL) returns 

018 Invoke: dvmDefineClass() pDexFile=0x05f44970 class: Lhiof/enigma/android/gestures/GesturesDemoActivity;  // dvmDefineClass() is invoked to define class GesturesDemoActivity; 

019 Return: dvmDefineClass() pDexFile=0x05f44970 class: Lhiof/enigma/android/gestures/GesturesDemoActivity;  // dvmDefineClass() returns. 

Fig. 5: Tracking report for an app packed by the Ali packer.

2) Tracking report analysis: We provide Python scripts to

analyze the tracking report in order to recognize the protection

patterns and determine whether new collection points are

needed. By exploiting the insight that a portion P (e.g., Dex

header, methods, etc.) of a Dex file should be valid right before

it is being used, we define four basic protection patterns for P :

(1) it is changed to valid value before its first use (FmT); (2)

it is modified to invalid value after its last use (TmF); (3) it is

altered to valid value before being used and turned to invalid

after the use (FmTmF); (4) it is always valid (T). Although the

basic protection patterns are by no means comprehensive, they

cover all packed samples accessible to us. Users can define

new patterns after studying the tracking report.

To recognize the protection patterns, we first collect the

method invocation and the memory modification information

from the tracking report. According to the target address

information of each modification operation M , we identify

which portion of the Dex file is modified by M . By checking

the method invocation information, we determine when the

portion is used. Given each portion P , we regard its content is

valid when it is being used. A quick approach to detect invalid

portions is to apply static analysis tool to the dumped Dex file

and see whether there is any parsing error.

During the first run, PackerGrind collects Dex data at the

basic data collection points, and hence the dumped Dex file

may include invalid portion. If so, we infer the protection

pattern and select new data collection points (i.e., when its

content is valid). After that, we execute PackerGrind again to

collect more valid portions.

We use an app packed by Ali packer as an example to

illustrate this process. Fig. 5 shows the tracking report. At line

003, dvmLoadNativeCode() is called to load the native library

libmobisec.so. Then, the JNI method attachBaseContextIT(VL)
of class Lcom/ali/mobisecenhance/StubApplication is called by

dvmCallJNIMethod() (line 005), and it returns at line 017.

The information about the instruction layer modifications

is from line 011 to line 016. At line 011, “3759DC87” and

“Executable” are the instruction address and the executable permis-

sion of the address, respectively. “STORE” indicates the instruc-

tion type, which is Ist_Store at line 011. “a 0x375b654c”
and “v 0x24” are the target address and the stored value, respec-

tively. “interfacesOff (pDexFile=0x05f44970 ClassIdx=5)” denotes

that the target address is the field interfacesOff of the 5th class

 1 public void onCreate(Bundle savedInstanceState) { 

 2   super.onCreate(savedInstanceState); 

 3   setContentView(C0000R.layout.main); 

 4   this.display = ((WindowManager) getSystemService("window")).getDefaultDisplay(); 

 5   this.mLibrary = GestureLibraries.fromRawResource(this, C0000R.raw.gestures); 

 6   if (!this.mLibrary.load()) { 

 7       finish(); 

 8   } 

 9   findViewById(C0000R.id.gestures)).addOnGesturePerformedListener(this); 

10 } 

(a) The original onCreate().
1 public void onCreate(Bundle savedInstanceState) { 

2   A.V(0, this, new Object[]{savedInstanceState}); 

3 } 

(b) The onCreate() in an packed app.
001 Invoke:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 

002               JNI_Reflection: Landroid/app/Activity; onCreate(VL) 

003               JNI_Reflection: Landroid/app/Activity; setContentView(VI) 

004               JNI_Reflection: Landroid/app/Activity; getSystemService(LL) 

005               JNI_Reflection: Landroid/view/WindowManagerImpl; getDefaultDisplay(L) 

006               JNI_Reflection: Landroid/gesture/GestureLibraries; fromRawResource(LLI) 

007               JNI_Reflection: Landroid/gesture/GestureLibraries$ResourceGestureLibrary; load(Z) 

008               JNI_Reflection: Landroid/app/Activity; findViewById(LI) 

009               JNI_Reflection: Landroid/gesture/GestureOverlayView; addOnGesturePerformedListener(VL) 

010 Return:dvmCallJNIMethod() pDexFile=0x05f41a90 mth: Lcom/baidu/protect/A; V(VILL) 

(c) Tracking report of A.V().
Fig. 6: The method onCreate() before and after packing and

the tracking report of A.V().

in the Dex file, which is represented by a Dexfile in memory

address 0x05f44970. At line 11, the field interfaceOff of the 5th

classes (ClassIdx=5) in the Dex file is modified. From line 012

to 016, the class_data_items of 10 classes (from ClassIdx=0
to ClassIds=9) in the Dex file are modified by the STORE (i.e.,

Ist_Store) instruction. Finally, the class GesturesDemoActivity
is defined by dvmDefineClass() at line 018 and 019.

The tracking report shows that the class_data_items

of all classes are filled with valid values in the

JNI method attachBaseContextIT(VL) before dvmDefineClass().
Since the runtime loads classes in dvmDefineClass() based

on class_data_items, the class_data_items’ contents

are valid after calling attachBaseContextIT(VL). That is,

class_data_item follows the FmT protection pattern. Hence,

we can collect the Dex data after attachBaseContextIT(VL) re-

turns. Since PackerGrind collects Dex data when it is defined

by dvmDefineClass() by default, the collected content is valid

and no more run is needed.

3) Native methods inspection: A packer can re-implement

an app’s Java methods in the native module, and then call them

through JNI. Although PackerGrind is not designed to reverse-

engineer the native code for reconstructing the bytecode, it

can still provide useful information about the native methods
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thanks to its cross-layer monitoring capability. More precisely,

packed apps have to use JNI reflection (i.e., dvmCallMethodV()
or dvmCallMethodA()) to invoke Android framework APIs in

Java. Since PackerGrind has wrapped these functions, it can

provide rich information about the native methods.

For example, Fig. 6 shows the method onCreate() in the

original app and that in the app packed by Baidu. It shows that

the method onCreate() has been re-implemented in native code,

which invokes Android framework APIs through JNI reflection.

In other words, after packing, the original implementation of

onCreate() is replaced with the invocation of the native method

A.V(). From the tracking report of A.V() shown in Fig. 6c, we can

infer the original implementation of onCreate(). For example,

the method onCreate() of class android/app/Activity is invoked

at Line 002. Correspondingly, as shown in Fig. 6a, the method

onCreate() of the MainActivity’s super class (android/app/Activity)

is invoked at Line 2. Note that other unpackers (e.g., [10], [11])

cannot profile such behavior.

F. Implementation on ART

We adopt similar methods to monitor packed apps running

in ART. Different from DVM that provides only two func-

tions to invoke a Java method in native code, ART provides

CallTYPEMethod() functions and CallStaticTYPEMethod() func-

tions to call non static methods and static methods, respectively.

TYPE indicates the type of the method’s return value.

To call a native method through JNI, ART in-

vokes the functions artInterpreterToCompiledCodeBridge() or

art quick generic jni trampoline() depending on whether the na-

tive method contains compiled code or not. Both of them even-

tually establish the JNI calling environment according to the JNI

call convention in ART. Before the execution of native code,

the functions JniMethodStart() or JniMethodStartSynchronized()
will be called depending on whether the native method is

synchronized or not. We wrap these two functions to track the

invocation of JNI methods and get the name of JNI methods

in ART.

Since ART is implemented in C++, all Dex data structures

are stored in class objects. We parse such class objects and

recover Dex data structures from them. PackerGrind currently

supports the ART in Android 6.0 and it reuses the modules at

the system layer and instruction layer for DVM.

V. EVALUATION

We conduct extensive experiments to evaluate PackerGrind
by answering the following five questions.

Q1: Can PackerGrind be adaptive to the evolution of packers
and identify their protection mechanisms?
Q2: Can PackerGrind correctly recover Dex files?
Q3: Is PackerGrind better than other available unpackers?
Q4: Can PackerGrind facilitate the analysis of malware?
Q5: What is the overhead of PackerGrind?

A. Data Set

We use two sets of packed apps to evaluate PackerGrind. The

first set has 480 packed apps with ground truth. More precisely,

we download 40 randomly selected open-source apps from

F-Droid [26] and then upload them to 6 online commercial

packing services (Qihoo [27], Ali [28], Bangcle [29], Tencent

[30], Baidu [24], Ijiami [31]) in Mar. 2015 (denoted as DB-15)

and Mar. 2016 (denoted as DB-16) to construct 480 packed

apps. The second set consist of 200 packed malware samples

from Palo Alto Networks [32]. These samples were packed by

eleven packers including Ali [28], APKProtect [33], Baidu [24],

Bangcle [29], Ijiami [31], Naga [34], Qihoo [27], Tencent [30],

LIAPP [35], Netqin [36], and Payegis [37].

We conduct the experiments in both Android 4.4 with DVM

and Android 6.0 with ART on a Nexus 5 smartphone [38].

PackerGrind monitors the protection patterns of these packed

apps and recover their Dex files.

B. Protection Mechanisms

Using PackerGrind, we reveal the protection mechanisms

adopted by 6 packers, each of which has two versions for

DB-15 and DB-16, individually. As shown in Table II, packers

are evolving with new techniques and hence unpackers should

be adaptive to the evolution. PackerGrind can unpack apps

protected by all mechanisms except the Re-implement Method.

TABLE II: Protection mechanisms adopted by six packers in
DB-15 and DB-16. The symbol before (or after) “—” denotes whether
a packer in DB-15 (or DB-16) uses the mechanism or not.

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
Dynamically
Release Dex

�—� �—� �—� ×—� �—� �—�
Dynamically
Modify Dex

×—� ×—� ×—� ×—� �—× �—�
Customized
Dex Parsing

×—� ×—× ×—× ×—× ×—× ×—�
Re-implement

Method
×—× ×—× ×—× ×—× ×—� ×—×

Anti-Debug
(e.g., ptrace)

×—× ×—× �—� ×—× ×—× ×—�

All but Tencent packer of DB-15 release Dex files to memory

dynamically. In DB-16, all packers except Baidu dynamically

modify selected structures in the Dex file. For example, Ali

packer changes the class_data_item of each class in the

loaded Dex file from invalid value to valid one before the class

is defined. Moreover, Ijiami packer sets the Dex file header

with valid value before dexFileParse() is called, and changes it

to invalid value after using dexFileParse().
Qihoo packer and Ijiami packer of DB-16 use their own

functions rather than the standard runtime functions to parse

certain structures of the Dex file. Qihoo packer invokes the

native code in its library libjiagu.so instead of dvmDefineClass()
to load classes. Ijiami packer parses the methods of the loaded

classes again using the native code in its library libexec.so,

and changes the instruction offsets of those methods to valid

values right before dvmDefineClass() returns. Baidu packer of

DB-16 re-implements all onCreate() functions using native code

with the same functionality. Bangcle packers uses ptrace() to

protect the app process from being attached by debugging

tools while Ijiami packer of DB-16 periodically searches for

the string “@com.android.reverse-” to detect ZjDroid [39].

Answer to Q1: PackerGrind is adaptive to the evolution of

packers and can identify the protection mechanisms adopted

by various packers.

363364

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on February 18,2022 at 01:23:45 UTC from IEEE Xplore.  Restrictions apply. 



C. Recovering Dex Files

1) Number of runs required for determining all Dex data
collection points: Table III shows that PackerGrind needs one

run for Ali, Bangcle, Tencent, and the new version of Baidu

packers (i.e., DB-16). It takes two runs to handle Qihoo, Ijiami,

and the old version of Baidu packers(i.e., DB-15). Once the Dex

data collection points for a packer are identified, PackerGrind
can recover the Dex files in one run.

TABLE III: Number of runs required for determining all Dex

data collection points.

Packer Qihoo Ali Bangcle Tencent Baidu
(DB-15)

Baidu
(DB-16) Ijiami

Number
of runs 2 1 1 1 2 1 2

Qihoo. Since Qihoo packer parses the protected Dex file

using native code in its library libjiagu.so instead of

standard functions, PackerGrind locates the first Dex file

when dvmIntepret() is invoked (i.e., the fourth Dex data

collection point). From the tracking report, we notice that

the class_data_off is changed to zero after its library

libjiagu.so is loaded. Since PackerGrind does not find

the Dex file at other collection points, we add a new data

collection point right before dvmLoadNative() for the second

run, and then the correct Dex file is recovered.

22 public void onCreate(Bundle bundle) { 
23   String str = "LXXX;->onCreate001(Landroid/os/Bundle;)V"; 
24   A.d(str);  
25   onCreate001(bundle);  
26   A.e(str);  
27 }  
28 
29 private void onCreate001(Bundle savedInstanceState) { 
30   super.onCreate(savedInstanceState); 
31   setContentView(C0000R.layout.main); 
32   this.display = ((WindowManager)getSystemService("window")).getDefaultDisplay(); 
33   this.mLibrary = GestureLibraries.fromRawResource(this, C0000R.raw.gestures); 
34   if (!this.mLibrary.load()) {  
35     finish();  
36   }  
37  findViewById(C0000R.id.gestures)).addOnGesturePerformedListener(this); 
38 }  

Fig. 7: Content of onCreate001() after 2nd run.

Baidu. For the samples packed by the old version of Baidu

packer (i.e., in DB-2015), we find that the method onCreate001(),
which is recovered after the first run, is empty. Hence, we add

a new data collection point after A.d() by analyzing the tracking

report and the Dex file recovered in the first run. In the second

run, the Dex file is successfully recovered (e.g., Fig. 7).

Ijiami. After the first run, we observe that all instructions

of the methods in the MainActivity are zero. By analysing

the tracking report, we find that the packed apps modify the

instructions of Methods after method resolution. Moreover,

the instructions of Methods are different from those of the

corresponding code_item structure in Dex file. Therefore, we

add a new data collection point after dvmDefineClass() for the

second run, and then the Dex file is successfully recovered.

2) Correctness of recovered Dex files: We assess the

correctness of recovered Dex files from three aspects. First,

we apply five popular static analysis tools, which can reverse-

engineer Dex files, to the recovered Dex files, because they

adopt different verification strategies to check Dex files. These

tools include Baksmali [40], Dexdump [41], Dex2jar [42],

Jadx [43] and IDA Pro [44]. PackerGrind can successfully

recover the Dex files of almost all samples. The only exception

comes from Dex2Jar when it handles the recovered Dex files

from Tencent samples (from DB-15). It failed to transform the

Dalvik bytecodes into java bytecodes due to Dex optimization

conducted by DVM.

TABLE IV: Difference between the original Dex file and

recovered Dex file from the samples of DB-15/DB-16 (⊕,

� and � represent the recovered Dex file has additional code,

less code, and the same code compared with the original Dex

file, respectively).

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
DB-15 � ⊕ ⊕ ⊕ ⊕ �
DB-16 � � ⊕ � ⊕� ⊕

Second, we compare the difference between the original

Dex files and the recovered Dex files. We randomly select 60

packed samples (10 samples packed by each packer), decompile

the Dex files into Java codes, and then manually compare

the decompiled Java codes from the original Dex files and

those from the recovered Dex files. The comparison results

are summarized in Table IV. The recovered Dex files are the

same as the original Dex files for Qihoo packer, Ijiami packer

of DB-15, Ali packer of DB-16 , and Tencent packer of DB-16.

Ali packer of DB-15 adds two classes to the original Dex

files, each of which has one field and three empty methods. It

also inserts the invocation of “Exit.b(Exit.a())” to the beginning

of every Java method. Exit.a() just returns false and Exit.b()
is empty. Tencent packer of DB-15 adds two classes to each

packed sample while Ijiami packer of DB-16 inserts five classes.

For Bangcle packer, there are six additional classes and

twelve additional classes added to the packed samples

of DB-15 and DB-16 respectively. In the main activity

class, a method named com sec plugin action APP STARTED()
is inserted and invoked at the beginning of the method

smallemphonCreate(). Bangcle packer of DB-15 creates

an intent named com.secneo.plugin.action.APP STARTED and

broadcasts it in com sec plugin action APP STARTED(). Bangcle

packer of DB-16 further creates a new monitoring thread in

com sec plugin action APP STARTED(). Baidu packer of DB-15

adds two classes to each packed sample, and re-implements all

the onCreate() methods using the dynamic code modification

technique. Baidu packer of DB-16 inserts one additional class to

each packed app but replaces the implementation of onCreate()
methods with native codes. Therefore, for these methods, the

recovered Java code is less than the original Java code.

Answer to Q2: PackerGrind can correctly recover all Dex code

that are not removed by packers as well as the additional

classes/methods inserted by packers. Even for the methods

that are re-implemented in native code, PackerGrind can

still recover useful sematic information, based on which it

is possible to regenerate the Dex code.

D. Comparison

While two recent tools, DexHunter and AppSpear, claimed

to be general unpackers, only DexHunter’s source code is

available. Hence, we only compare PackerGrind , DexHunter
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and Android-unpacker [21] using 30 randomly selected samples

from six packers (i.e., 5 samples from each packer). We perform

two-step checking on the correctness of recovered Dex files.

First, the Dex files can be disassembled by Baksmali. Second,

we compare them with the Dex files of the original apps.

The failure in any step will lead to × in Table V indicating

unsuccessfully unpacking.

TABLE V: Comparison among Android-unpacker, DexHunter

and PackerGrind.

Packer Qihoo Ali Bangcle Tencent Baidu Ijiami
Android-unpacker [21] × × × × × ×

DexHunter [10] × √ √ √ × ×
PackerGrind

√ √ √ √ √∗ √

Android-unpacker recovers Dex files by attaching to the

app process through ptrace and dumping Dex files in memory.

However, it cannot attach to packed apps with anti-debugging

capability. Moreover, for packers that dynamically release and

modify Dex files, Android-unpacker cannot obtain the valid

Dex files because it does not know the proper dumping moment.

PackerGrind can successfully recover all Dex files from

six packers. We mark Baidu samples with * because the Dex

code in onCreate() of those samples has been re-implemented in

native code as detailed in Section IV-E. Although PackerGrind
is not designed to reverse-engineer native code, it can still

provide very useful information about the native method as

explained in Section IV-E.

DexHunter cannot correctly recover the Dex files for samples

from Qihoo, Baidu and Ijiami. For Qihoo samples, the

Dex files dumped by DexHunter only contain stub classes

instead of real code, such as com.qihoo.util.Configuration and

com.qihoo.util.StubApplication, because Qihoo packer uses

its own functions instead of runtime methods monitored by

DexHunter to load classes. For Baidu samples, the Dex files

dumped by DexHunter cannot be disassembled because their

Dex headers have been modified by the packed apps. Hence,

they cannot be recognized by de-compilers. DexHunter also

cannot recover the original Dalvik bytecodes of onCreate(). For

Ijiami samples, DexHunter cannot unpack them successfully

due to the time-out checking mechanism utilized by Ijiami.

More precisely, the packed apps will check the existence of a

long-running task, which exceeds a time threshold, and exit if

found. Therefore, the process of DexHunter will stop because

its unpacking operations takes such a long time that the packed

app exits quickly.

Answer to Q3: PackerGrind outperforms other available

unpacking tools (i.e., Android-unpacker and DexHunter).

E. Unpacking Malware

We apply PackerGrind to 200 malware samples packed by

eleven popular packers and successfully recover all Dex files.

By performing static analysis on these Dex files, we find that

malware often employed packers to hide the invocations of

sensitive APIs requiring permissions. Given a Dex file, we scan

all sensitive APIs in it, and count how many permissions are

required according to the mapping between permissions and

APIs from PScout [45]. It is worth noting that many detection

systems leverage sensitive APIs and permissions to discover

mobile malware [46]–[50].

Let Pp and Pr denote the number of permissions required

by a packed app and its recovered Dex file, respectively. We

calculate the means of Pp and Pr for all malware samples

packed by a packer. The result listed in Table VI shows that

from the recovered Dex files we find more evidences (i.e.,

sensitive APIs requiring certain permissions) to explain why

a malware sample needs certain permissions. For example,

for Naga samples, before unpacking, we cannot find any

API invocation requiring the permissions in the manifest (i.e.,

Pp = 0). Malware detection system may think that these

samples just overclaim the permissions without using them. In

contrast, after unpacking, we can identify API invocations that

require 3 permissions in the manifest on average (i.e., Pr = 3).
Let Ap and Ar indicate the number of sensitive API invocations

in a packed app and its recovered Dex file, respectively. We

compute the means of Ap and Ar for all malware samples

packed by a packer. The result listed in Table VI obviously

indicates that many more sensitive APIs can be found from the

recovered Dex file. For example, no sensitive API invocation

is found in malware samples packed by Ijiami whereas on

average 45.88 sensitive API invocations can be found from the

recovered Dex files.

Answer to Q4: PackerGrind can facilitate malware detection

by exposing the hidden malicious components.

F. Overhead
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Fig. 8: CF-Benchmark results.

To evaluate the overhead introduced by PackerGrind, we

run CF-Benchmark [51] 30 times on Nexus 5 without Valgrind,

with Valgrind, and with PackerGrind , respectively. The scores

of CF-Benchmark on the same smartphone without Valgrind

serve as the baseline for comparison. Fig. 8 shows the results

obtained in three scenarios, which include the overall scores,

the scores of Java operations, the scores of native operations.

We can see that Valgrind incurs 12.4 times slowdown and

PackerGrind brings 17.6 times slowdown on average compared

with the baseline. Since PackerGrind is based on Valgrind,

it is still efficient because it is only 1.34 times slower than

Valgrind. Compared with the dynamic analysis systems based

on emulator that may introduce 11-34 times slowdown [15],

PackerGrind has acceptable efficiency.

Answer to Q5: PackerGrind introduces acceptable low overhead

compared to Valgrind and emulator-based dynamic systems.
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TABLE VI: Permissions and sensitive API calls in malware samples before and after unpacking by PackerGrind.

Packer Ali Apkprotect Baidu Bangcle Ijiami Naga Qihoo Tencent LIAPP Netqin Payegis
Number of samples 26 24 19 34 24 12 27 9 2 18 5

Average value of Pp 0.00 2.65 0.21 0.24 0.00 0.00 2.07 7.22 0.00 4.28 1.80

Average value of Pr 5.38 3.65 10.11 7.56 7.04 3.00 8.81 7.78 0.50 10.33 2.00

Average value of Ap 0.00 5.62 0.95 0.88 0.00 0.00 6.30 40.67 0.00 19.56 5.80

Average value of Ar 49.92 9.38 111.68 50.18 45.88 14.33 88.52 58.00 4.50 90.94 11.00

VI. DISCUSSION

PackerGrind can only recover the Dex data after the methods

for releasing the real code are invoked. The majority of

existing packers execute such methods, which are usually JNI

methods, when a packed app is launched to avoid performance

degradation. We also use IntelliDroid [25] to trigger the

execution of such methods. Since packers may delay the

execution of such methods after knowing the mechanism of

PackerGrind we will leverage advanced input generator for

Android [52], [53] to enhance PackerGrind in future work.

PackerGrind is based on Valgrind. Similar to the anti-

emulator methods, packed apps may detect the existences

of PackerGrind and then cease releasing the real code. For

example, they could check the app starting command or count

the time used to finish some operations. To address this issue,

we could change the return value of selected APIs to hide the

existence of PackerGrind or insert additional IR statements

to modify the registers and force the app to execute forward.

PackerGrind currently focuses on the operations related to

Dex files. Packed apps may hide the real code by modifying the

compiled code in oat files directly. Moreover, if packed apps

load different code into the same memory and execute them

under different conditions, PackerGrind cannot decide which

code is real. Since PackerGrind can trace such modifications

and monitor code execution, we will address these issues by

employing more semantic information in future work.

VII. RELATED WORK

Although there are already many studies on code

packing/unpacking, almost all of them focus on x86 native

codes [54]–[57]. The unpacking techniques for x86 binaries

cannot be applied to packed Android apps because Android

and the OSes running on x86 CPU have different architectures

and execution models [10], [11], let alone the different formats

of their executables. For example, Android packers need to

protect both the Dex code and the native code if any, whereas

traditional packers only hide native code [54]–[57].

Since mobile malware adopts packers to evade the detection,

a few studies on unpacking apps were proposed recently

from both academia [10], [11], [58] and industry [21], [39].

However, all of them adopt the one-pass strategy (i.e., dump

the Dex data at fixed points), and therefore they can be easily

evaded by the latest packers. For example, DWroidDump [58]

only collects the Dex data in dvmDexFileOpenFromFd() when

a Dex file is mapped to memory by the runtime. DexHunter

[10] and AppSpear [11] are proposed to be general unpacker

by customizing Android runtime. DexHunter inserts code in

defineClassNative() to extract Dex files from memory. However,

it may dump invalid Dex files since packers can release the

real code after this function. AppSpear instruments the Dalvik

interpreter to collect required data during method execution

and then reconstruct the Dex file. Unfortunately, AppSpear may

also dump invalid data because it relies on DVM’s parsing

methods to collect Dex data. Note that packers could make these

methods return inaccurate results and use their own functions to

parse Dex files. Moreover, AppSpear does not support ART. In

contrast, PackerGrind adopts an iterative approach and conducts

cross-layer monitoring so that it is adaptive to the changes of

packers. Experimental results show that it outperforms existing

approaches. Moreover, it supports both DVM and ART.

Existing cross-layer monitoring tools [15], [19], [59], [60]

for Android cannot collect all necessary information and

fulfill the requirement for handling packed apps. For example,

ProfileDroid [59] cannot handle packed apps because it relies

on apktool to conduct static analysis. TaintDroid [19] neither

supports ART nor collects information at the runtime, system,

and instruction layers. DroidScope [15] and NDroid [60] rely

on QEMU, which can be detected by packers [61].

VIII. CONCLUSION

The evolving app packers can easily circumvent existing

unpackers because they adopt the one-pass strategy and hence

are not adaptive to the changes of packers. To address this

challenging issue, we propose a novel iterative process and

develop PackerGrind to recover the Dex files from packed apps.

With the capability of conducting cross-layer profiling in real

smartphones, PackerGrind can effectively monitor the packing

patterns and adapt to the evolution of packers for extracting

Dex files. Our extensive experiments with real packed apps

illustrate the effectiveness and efficiency of PackerGrind.

We will release PackerGrind to the community only for

research purposes to prevent illegal use. Interested users please

send an email to packergrind@gmail.com for the system using

your university’s email account. The first data set and the hash

values of the samples in the second data set will be available

at https://sites.google.com/site/packergrind.
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