
Concise Paper: On Measuring One-Way Path
Metrics from a Web Server

Xiapu Luo†‡, Lei Xue†, Cong Shi§, Yuru Shao†, Chenxiong Qian†, and Edmond W. W. Chan†

Department of Computing, The Hong Kong Polytechnic University†

The Hong Kong Polytechnic University Shenzhen Research Institute‡

School of Computer Science, Georgia Institute of Technology§

{csxluo,cslxue,cscqiang,csyshao}@comp.polyu.edu.hk,{shicong82,edmond0chan}@gmail.com

Abstract—Measuring one-way path metrics can facilitate
adaptive online services (e.g., video streaming and CDN) tuning to
improve quality of experience (QoE) of their clients. However, ex-
isting server-side measurement systems suffer from (i) measuring
only few one-way path metrics, (ii) limited client-side support, and
(iii) heavy overheads. In this paper, we propose and implement
OWPScope, a novel system that can be deployed to any web
server to measure four important one-way path metrics—packet
loss, packet reordering, jitter, and capacity—without requiring
software or plugin installation at their web clients. Moreover,
OWPScope performs representative measurement by correlating
only information gleaned from standard features in HTML5
(e.g., navigation timing, resource timing), HTTP, and TCP. Our
extensive evaluations in both a testbed and the Internet show
that OWPScope can effectively measure one-way path metrics
with low overhead.

I. INTRODUCTION

The asymmetry of Internet paths stimulates the one-way
path measurement due to the asymmetric effects [1]. Online
services can characterize one-way path metrics to better under-
stand conditions of the network paths between their clients and
themselves and achieve adaptive service tuning for Quality-of-
Experience (QoE) improvement. For instance, by knowing the
one-way path performance from a set of servers to a client,
a CDN controller can direct the client to the most suitable
server [2]. Such information can also facilitate video streaming
services to select a proper bitrate for a client [3], [4], help
service providers differentiate ISPs’ performance [5], [6] and
diagnose network faults [7]. Despite its usefulness, measuring
one-way metrics by online services is very challenging due to
the following limitations in the existing solutions.

Measuring only few one-way path metrics. Knowing
low-level one-way metrics (e.g., packet loss, packet reorder-
ing, jitter, and capacity) are indispensable for characterizing
and adjusting online services’ performance. However, existing
measurement systems, such as speedtest and boomerang, only
measure limited number of path metrics, such as round-trip
time (RTT) and TCP bulk-transfer capacity; and the measure-
ment accuracy is limited due to their incapability to accessing
low-level information.

Limited client-side support. Most existing measurement
systems require installing specific softwares or plugins at the
client side [8]–[12]. Although they may simplify the measure-
ment, not all clients are willing to install such software/plugins

due to security concerns, thus limiting their popularity. More-
over, many systems without client-side software installation
conduct the measurement by sending special packets (e.g.,
ICMP) to induce responses from clients [13]–[15], instead
of packets carrying application data in established network
sessions (e.g., TCP sessions). However, their measurements
will fail if the clients’ perimeter firewalls filter out these
unsolicited packets.

Heavy overheads. Existing systems usually perform in-
dividual measurement for each metric and, therefore, cause
heavy network and system overheads when multiple metrics
are measured in parallel. It is desirable to obtain multiple
metrics simultaneously from the same measurement traffic to
reduce the impact of the measurement on network paths [16].

To overcome these limitations, we propose OWPScope, a
novel system that empowers web servers to simulatenously
measure four low-level one-way path metrics, i.e., packet loss,
packet reordering, capacity, and jitters. OWPScope exploits
only standard features in HTML5, HTTP, and TCP without
requiring specific software/plugins installed at the client side.
With specially crafted probing packets in an established TCP
connection, OWPScope can penetrate client-side firewalls and
perform measurement with low overhead by correlating in-
formation gleaned from the application and the TCP levels.
Moreover, OWPScope uses packets carrying real application
data to conduct representative measurement.

OWPScope consists of two key components: (i) a server-
side measurement module that sends crafted probing packets
and inspects packets from clients to compute the metrics and
(ii) a piece of javascript (js) code running in a client’s browser
to collect required timestamps through HTML5 interfaces. Fig.
1 illustrates one application scenario of OWPScope, where it is
deployed to a web server and other resource servers in a CDN
network. When a client visits the front page of the web server
(step 1), the js code will be downloaded and executed in the
client’s browser (step 2) and some embedded web objects (e.g.,
images) will be fetched from other resource reservers (steps
3,4,3’,4’). After the browser receives these web objects sent by
OWPScope, the js code collects a set of timing information and
sends them back to the web server (step 5). By processing such
data, OWPScope obtains the one-way metrics samples between
the client and each resource reserver and then redirects the
client to the most suitable server.

In summary, our major contributions include:978-1-4799-6204-4/14$31.00 c©2014 IEEE

Internet

Web server Resource servers

1 2 3 4 3’ 4’ 5

Client

OWPScope OWPScope OWPScope

+

Fig. 1: Application scenario of OWPScope: selecting a suitable CDN server.

1) We propose OWPScope, a novel server-side system that
can measure four important one-way path metrics without
installing specific softwares or plugins at the client side.

2) To our best knowledge, OWPScope is the first system
that exploits the standard features in HTML5, HTTP,
and TCP together to conduct one-way path measurement.
Moreover, we discover implementation deficiencies in
popular browsers when evaluating the new features.

3) We implement OWPScope in 1850 lines of C and 421
lines of javascript after tackling several challenging prob-
lems, such as correlating cross-layer information and
handling time resolution issues. The extensive evaluations
in a testbed and through Internet show that OWPScope
can effectively measure those metrics with low overhead
to the hosting server and the network.

We detail the design of OWPScope in Section II. Section
III reports the evaluation in a testbed and through Internet.
After introducing related works in Section IV, we conclude
the paper in Section V.

II. OWPSCOPE

This section first introduces the HTML5 features exploited
by OWPScope and then describes OWPScope’s measurement
process and methods for measuring one-way path metrics.

A. HTML5 features

Three HTML5 features, i.e., navigation timing (NT) [17],
Resource timing (RT) [18] and High Resolution Time (HRT)
[19], are used to collect timing information on the client side.
NT and HRT are W3C recommendation (i.e., standard) and
supported by major browsers, while RT is W3C’s Candidate
Recommendation and currently supported by IE and Chrome.

Specifically, NT provides an interface to obtain timestamps
in millisecond resolution for a set of events during a web
page’s loading cycle [17]. Meanwhile, RT offers an interface
to collect timing information associated with each resource
within a document. From NT (or RT), OWPScope collects
three timestamps: (1)requestStart, denoted as Tqs, the time
immediately before the browser sends a request for a web
page (or a resource); (2)responseStart, denoted as Tps, the time
immediately after the browser receives the first byte of a web
page (or a resource); (3)responseEnd, denoted as Tpe, the time
immediately after the browser receives the last byte of a web
page (or a resource). In addition, OWPScope relies on HRT to
obtain the current time in sub-millisecond resolution, which is
not subject to system clock skew or adjustments [19].

TMI2

Server +
OWPScope

Client

TRp1TRp2

T’Rp1 T’Rp2

responseStart responseEnd Time

TMI1

Rq Rp1 Rp2 MI1 MI2

NT/RT/HRT
Interfaces

requestStart

Rq_P Rp_P

Request a web page
containing resources

for measurement.

Request
other web

objects.

TRq

Conduct forward-path
measurements through

requesting a web object.

Conduct Backward-path
measurements through sending

back the timing information.

T’MI1

Fig. 2: The measurement process of OWPScope. The forward path is from a
server to a client and the backward path is from a client to a server.

B. General measurement process

Fig. 2 illustrates OWPScope’s measurement process and
the collected timing information when RT is available. At the
beginning, the client (i.e., C) sends a request (i.e., Rq P)
for a web page (i.e., Rp P) that contains several small web
objects, like figures, and OWPScope’s js code. For the ease of
explanation, we assume that these web objects, to be fetched
by the client, are in the same server as the web page.

Let W be one web object requested by C through Rq,
whose sending time is recorded in Tqs. On the arrival of
Rq, OWPScope logs its arrival time TRq and replies with
2 probing packets, which carry the content of W , and Nu
(Nu ≥ 0) padding packets, which are dispatched between
probing packets. Padding packets are the same as probing
packets except that they have limited TTL values so that they
will be routed through the same path as probing packets and
dropped by a router a few hops away from C.

Let TRp1 and TRp2 be the sending time of Rp1 and Rp2,
and T ′

Rp1 and T ′
Rp2 denote the time when they reach C. The

browser records the time when Rp1 (or Rp2) is delivered to it
in Tps (or Tpe) before renderingW . When Rp P has multiple
web objects, the browser will record each object’s Tqs, Tps,
and Tpe. Finally, the js code in the web page fetches the stored
values through RT and sends them along with padded content
to OWPScope. The padded content is long enough so that the
client will send back 2 packets (i.e., MI1 and MI2), whose
sending times and arriving times are denoted as T ′

MIi and
TMIi, respectively. After a predefined delay, the web page will
be automatically reloaded for another round of measurement.
If the browser only supports NT, OWPScope regards the first
web page as W . The browser will also record the arrival time
of Rp1(or Rp2) in Tps (or Tpe).

C. Metric measurement methods

One-way packet loss. It is challenging to detect the loss of
probing packets because we cannot capture packets in C. OW-
PScope addresses this issue by driving C to generate different
responses in the presence or the absence of probing packets.
More precisely, OWPScope instructs Rp1 to acknowledge part
of Rq1. Let SNRq1 and LRq1 denote the sequence number
and the length of Rq1, respectively. OWPScope sets Rp1’s
acknowledgement number to SNRq1 +

LRq1

2 and that of Rp2

to SNRq1 +LRq1. As shown in Fig. 3(a), if Rp1 is lost, Rp2

triggers a pure ACK packet. The server retransmits Rp1 after
timeout, denoted as Rp1, and then C sets Tps and Tpe with the
same value (sometimes there may be negligible difference due
to noise). Because of the request-response nature of HTTP, C

Server +OWPScope

Client

responseStart
=responseEnd

Time

Rq1

Rp1 Rp2

NT/RT/HRT
Interfaces

requestStart

Pure
ACK

Rp1

Timeout

Rq2Rq2

(a) Rp1 is lost.

Server + OWPScope

Client

responseEnd Time

Rq1

Rp1
Rp2

NT/RT/HRT
Interfaces

requestStart

Pure
ACK

Rq1'

Timeout

Rp2Rp2

responseStartresponseStart

Rq2Rq2

(b) Rp2 is lost.

Server + OWPScope

Client

responseEnd
Time

Rq1
Rp1

Rp2

NT/RT/HRT
Interfaces requestStart

Pure
ACK

Timeout

Rp2Rp2

responseStartresponseStart

Rp1Rp1

Rq2Rq2
Rq1

(c) Rp1 and Rp2 are lost.
Fig. 3: Detecting forward-path packet losses.

TMI2Server + OWPScope

Client

Time

MI1 MI2

NT/RT/HRT
Interfaces

TMI1TMI1

MI1MI1

Timeout

T’MI1T’MI1

Pure
ACK

(a) MI1 is lost.

TMI1Server + OWPScope

Client

Time

MI1

MI2

NT/RT/HRT
Interfaces

TMI2TMI2

MI2MI2

Timeout

T’MI1T’MI1

Pure
ACK

(b) MI2 is lost.

TMI2Server + OWPScope

Client

Time

MI1 MI2

NT/RT/HRT
Interfaces

TMI1TMI1

MI1MI1

Timeout

T’MI1T’MI1

Pure
ACK

MI2MI2

(c) MI1 and MI2 are lost.
Fig. 4: Detecting backward-path packet losses.

can only send out Rq2 for next web object through the same
TCP connection after Rp1 has been received.

If Rp2 is lost as shown in Fig.3(b), a pure ACK will
be sent after the delayed ACK timer expires, indicating that
Rp1 has been received. Since Rp1 only acknowledges part of
Rq1, C will retransmit the unacknowledged portion, denoted as
Rq1′. The server will retransmit Rp2 after timeout (i.e., Rq2).
Therefore, the difference between Tpe and Tps approximates
to the server’s retransmission timeout (RTO). The new request
(i.e., Rq2) will be dispatched after Rq2 is received.

If both Rp1 and Rp2 are lost, the client will retransmit the
whole request (i.e., Rq1) again, as shown in Fig. 3(c). The
interval between the arrival time of Rq1 and that of Rq1 is
around C’s RTO. The server will first retransmit Rp1 (i.e.,
Rp1) that will trigger a pure ACK, and then retransmit Rp2

(i.e., Rp2) after receiving the pure ACK. Then, the difference
between Tpe and Tps approximates to RTT. Another request
(i.e., Rq2) will be sent after Rp1 and Rp2 arrive.

Fig.4 illustrates how to detect backward-path packet losses.
It is easy as two packets will be returned and OWPScope can
capture them. If MI1 is lost, OWPScope first observes MI2
and then the retransmitted MI1. We use dM= |TMI2 - TMI1|
to differentiate it from the scenario when MI1 and MI2 is
reordered, because in the former case dM is close to C’s RTO
whereas in the latter case dM is usually much smaller [20]. If
MI2 is lost, OWPScope first observes MI1 and dM is close
to C’s RTO. If both packets are dropped and retransmitted,
(TMI1 - T ′

MI1) approximates to the sum of its normal value
and C’s RTO.

One-way packet reordering. It is straightforward to detect
packet reordering on the backward path because OWPScope
captures all packets from C. However, it is nontrivial to
detect forward-path packet reordering since OWPScope cannot
capture packets in C. We tackle this problem by letting in-order
probing packets trigger responses different from that caused by
out-of-order probing packets. As shown in Fig.5, the arrival
of Rp2 will induce a pure ACK packet whose acknowledge

Server + OWPScope

Client

responseStart=
responseEnd

Time

Rq1
Rp1 Rp2

NT/RT/HRT
Interfaces

requestStart

Pure
ACK Rq2Rq2

Fig. 5: Detecting forward-path packet reordering.

number equals to the sequence number of Rp1. After receiving
Rp1, C sends out a new request Rq2. Note that OWPScope can
distinguish the forward-path packet reordering from forward-
path packet loss according to Rq2 before retransmitting any
packet, because C cannot send it until receiving Rp1 and Rp2

to the current request (i.e., Rq1). This method is effective
because the time lag of reordered packets is quite small
compared to the minimal one-way delay [20].

One-way path capacity. Let Cj be the maximum number of
bits that can be transmitted on the jth link. The one-way path
capacity equals to Ω = min{Cj}, j = 1, . . . , L, where L is
the number of links that compose the path. OWPScope uses
packet train to measure the forward-path capacity by sending
N = 2+Nu packets of size S bytes back-to-back. The packet
dispersion observed by C is δN = T ′

Rp2 − T ′
Rp1. However,

they cannot be obtained by OWPScope because we do not
control C. Instead, we estimate δN using Tpe − Tps and then
the capacity can be computed by Eq.(1) following [21].

ΩF =
(N − 1)S

δN + ε
=

(1− 1
N)S

δN
N + ε

N

, (1)

where ε denotes the noise due to the approximation.

The rational behind this packet train based approach is
three-fold. First, the resolution of NT/RT (i.e., millisecond)
limits the minimal δN that can be measured and, thus, the
maximal capacity that can be measured by a packet-pair based
method (i.e., N = 2). In contrast, δN can be increased by a
long packet train. Second, the approximation may be biased

by the noise from OS/browser. Eq.(1) shows that the effect
of noise can be mitigated by increasing N . Third, although a
packet train measures the average dispersion rate (ADR) in the
presence of severe cross traffic, ADR has two good properties
[21]: it is independent of the length of packet train (i.e., N) so
that OWPScope can increase N to mitigate the effect of noise;
the effect of cross traffic can be alleviated by increasing the
sending rate of probing packets. Tools like DSLprobe [14]
have demonstrated the accuracy of packet train.

We further employ the minimum-delay-sum principle [15]
to filter out biased samples. Let df1 = Tps − TRp1 and df2 =
Tpe−TRp2. The principle specifies that if the probing packets
are affected by cross traffic, the sum of packet delays will
be increased [15]. Therefore, only samples that fulfill Eq.(2)
should be used to compute the forward-path capacity.

min{df1 + df2} = min{df1}+ min{df2} (2)

OWPScope use packet pair to measure backward-path
capacity as shown in Eq.(3), because it can capture packets
from C with high-resolution timestamp.

ΩB =
S

TMI2 − TMI1
(3)

Similarly, we define db1 = TMI2 − T ′
MI1 and db2 = TMI1 −

T ′
MI1 and use Eq.(4) to select unbiased samples for calculating

the backward-path capacity. T ′
MI1 is obtained through HRT.

min{db1 + db2} = min{db1}+ min{db2} (4)

One-way jitter. Let Df = Tps - TRp1 and Db = TRq - Tqs. Note
that Df and Db are not one-way delays, because the server
and the client are usually not synchronized. Given a sequence
of Df and Db samples, we can compute the one-way jitter as
θf (i) = Df (i + 1) − Df (i) and θb(i) = Db(i + 1) − Db(i).
Since the clock shew in typical computer is around 1 part per
million (ppm) [22], if the interval between samples is small
(e.g., 100ms), the error in jitter measurement due to clock skew
is negligible (i.e., 0.1µs). Otherwise, we follow the methods
in [22] to remove the relative clock skews.

III. EVALUATION

We have implemented OWPScope with 1,850 lines of C
and 421 lines of javascript. We conduct extensive experimental
evaluation to answer three questions: (1) Does major browsers
well support NT and RT? (2) Does OWPScope function
correctly and how is its overhead? (3) What observations can
OWPScope make when measuring Internet paths?

A. Approximation accuracy of using NT/RT

Since (Tpe−Tps) is used to approximate to (T ′
Rp2−T ′

Rp1),
we first evaluate the approximation accuracy in two settings,
including a Linux machine(i3 CPU 2.4GHZ and 8GB memory)
running Ubuntu 12.04 with FireFox (v26) and Chrome (v32),
and a Window machine with the same hardware running
Windows 7 with IE (v11), FireFox (v26) and Chrome (v32).
We delay Rp2 by β (β ∈ {30, 50, 100, 150}ms) to emulate
packet dispersion and use WireShark to capture Rp1 and Rp2

at the client side for calculating (T ′
Rp2 − T ′

Rp1). For each
setting, we run the experiment for 30 times and calculate the

mean and the standard deviation. Moreover, we also examine
the result after introducing 25% CPU load to the PC.

Fig. 6 shows that the majority of the differences are within
[-1, 1]ms. It is acceptable as OWPScope can further increase
N to mitigate the effect of noise as shown in Eq.(1). The
difference obtained in Linux is usually smaller than that in
Windows. The largest difference was observed when using
NT within IE in Windows. In contract, the difference is not
significant when RT is used in IE. It may be due to the
implementation deficiencies as NT and RT are new standards.

By studying the source codes of FireFox and Chrome,
we did observe some implementation issues, including (1)
Chrome records responseStart after processing an HTTP
header while Firefox does it before processing the head-
er. It may be the reason why Chrome’s difference increas-
es with additional CPU load; (2) in Windows, Chrome
uses the function timeGetTime() to retrieve the sys-
tem time in milliseconds while Firefox uses the function
QueryPerformanceCounter() for retrieving timestamp
with higher resolution. It may be the reason why Chrome has
worse performance than FireFox; (3) To ensure the timestamp
increases monotonically, Chrome introduces a set of functions
that will adjust the raw timestamp. These functions may
introduce additional noise; (4) Some issues in Chrome might
have been discovered without fix. For example, we found
a “FIXME” comment in the function responseStart()
saying that the time of responseStart may be delayed;

B. Controlled experiments

Bridge A Bridge B

Resource Server

+ OWPScope

ITG Receiver

Switch A Switch BRouter

Client (Browser)

Web Server

+ OWPScope

ITG Sender

Cross traffic

Measurement traffic

Fig. 7: The topology of the testbed.

We validate OWPScope in a testbed shown in Fig.7, where
OWPScope is deployed in a resource server and a web server.
A MikroTik router is used to limit the network capacity and
D-ITG is employed to generate cross traffic.

Packet loss and packet reordering. To validate the detection
of packet losses, we intentionally drop Rp1 and/or Rp2 fol-
lowing Fig. 8. To emulate packet reordering on the forward
path, we let OWPScope send Rp2 before Rp1. The responses
from the client in these scenarios follow our expectations.

Capacity. To evaluate OWScope’s capability of measuring
capacity, we change the capacity of the path between the client
and the resource server, and adjust the packet train’s length. We
run the experiment 30 times for each setting and list the mean
and the standard deviation of estimated capacities in Tab.I.
The results show that OWScope can accurately estimate the
capacity with small standard deviation. Moveover, a longer
packet train leads to better estimates, thus validating Eq.(1).

System load. We use siege (www.joedog.org) to simulate
visitors to the resource server, who generate different number

Fig. 6: Approximation accuracy of using NT/RT in different OS/browsers with/without intentionally introduced CPU load. Each cell contains the average value
in millisecond and the standard deviation. L: Linux; W: Windows; FF: FireFox; CH: Chrome; IE: Internet Explorer. FireFox (v26) does not support RT.

of packets (i.e., 10, 30, 100). For each setting, siege runs for
10 minutes and we log the average load at the end of each
minute. Tab.II lists the mean of the ten results, showing that
OWScope introduces light overhead to the hosting server.

TABLE I: Capacity measurement in the testbed. N is the length of packet
train and ΩF is the estimated capacity.

2Mbps 5Mbps 10Mbps
N 10 30 30 50 50 100
ΩF 2.17/0.19 2.07/0.05 5.61/0.37 5.35/0.15 10.09/0.2 10.02/0.07

TABLE II: Load of the resource server.

Number of users 10 packets 30 packets 100 packets
50 0.04 0.046 0.08
100 0.045 0.056 0.085

C. Internet experiments

Capacity. Following Fig. 1, we set up a web server in our
campus network with limited capacity of 5Mbps and deploy
four resource servers in Amazon EC2, which are located
in Singapore (SG), California (US), Tokyo (JP), and Sao
paulo (BR), individually. OWPScope is deployed on those
servers and uses RT to perform the measurement. We run
IE 11 on window 8.1 and Chromium 32.0 on Ubuntu 12.04
from a residential network to visit the web server’s front
page, which includes images in different resource servers. The
download capacity of the residential network is 10Mbps (i.e.,
the forward-path capacity).

Due to limited pages, we only report the result for forward-
path capacity as shown in Tab. III. Since the estimated capacity
of the four Internet paths are all around 10Mbps, the bottleneck
may be the residential network. As the web server has smaller
capacity (i.e., 5Mbps), it becomes the bottleneck of that path.
Tab. III shows that the estimation accuracy increases with N ,
which is in consistent with Eq.(1), and two browsers lead to
similar results.

TABLE III: The estimated forward-path capacity (in Mbps) of five Internet
paths. Each cell has two average values obtained from Chrome and IE.

N SG US JP BR Campus
32 11.27/10.99 11.25/10.69 10.98/10.68 11.07/11.15 5.55/5.27
42 10.30/10.10 10.49/10.84 10.40/11.02 10.27/10.61 5.25/5.40
52 10.33/10.24 10.07/10.32 9.96/10.11 9.61/10.05 5.22/5.21

TABLE IV: Other systems’ results and their traffic consumption.

Tool Traffic volume(MB) Number of packets ΩF (Mbps)
speedtest 38.6 40,336 9.14

npad 30.70 21,826 8.12
netalyzr 98.86 198,936 9.29

boomerang 2.06 2,111 1.78

For comparison, we use other tools, including Speedtest,
NPad, Netalyzr and Boomerang, to estimate the capacity from
their servers to the same client. Speedtest selects one of its
servers in the same region. NPad’s server is hosted by M-Lab
and Netalyzer has its own server. Since boomerang requires the
user to set up a server, we deploy it on an EC2 host in US. For
each tool, the measurements were repeated for 10 times and
the average values for the traffic volume, number of packets,
and the estimated capacity are computed and shown in Tab. IV.
While Speedtest and Netalyzr can achieve better performance
in capacity measurement than NPad and boomerang, their
accuracies are still lower than that of OWPScope. Speedtest
generated around 40MB traffic for estimating RTT and u-
pload/download speed. In contrast, OWPScope can measure
multiple one-way path metrics with much fewer packets.
Although boomerang only generated around 2MB traffic, its
estimation is not reliable. Since Netalyzr conducted many other
measurements besides capacity estimation, it generated almost
200MB traffic, consuming much bandwidth.

Path performance over time. We deploy OWPScope and
a web server on an EC2 host in US, and launch a Chrome
browser in our campus network to periodically visit the server
for two days. As shown in Fig.8(a), the forward-path jitter does
not have the same distribution as the backward-path jitter and
the round-trip jitter. Note that knowing one-way jitter is useful
for services sensitive to it (e.g., online streaming). Fig.8(b) and
Fig.8(c) show the time sequence of one-way jitter and packet
loss. Both metrics demonstrate a diurnal pattern (e.g., period
1 and period 2 in both figures). Moreover, there is an obvious
correlation between jitter and packet loss (i.e., larger jitter
accompanied with more packet loss). Note that the forward
path and the backward path exhibited different performance.

IV. RELATED WORK

NT and RT have been quickly adopted by the industry. For
example, Google uses them to measure “perceived latency”
and provides site speed reports [23], [24]. Yahoo adds the
support of NT in boomerang. However, to our best knowledge,
OWPScope is the first system exploiting NT/RT for measuring
low-level one-way path metrics.

Although several server-side measurement systems have
been proposed, none of them can measure one-way metrics
like OWPScope. WhyHigh measures client latencies across
CDN servers to identify the prefixes suffering from inflated
latencies [2]. Festive uses the throughput measured by a
media player to guide the bitrate selection for steaming [4].
QDash employs coarse available bandwidth measurement to
facilitate the section of video quality level [3]. Rajamony et al.

−40 −30 −20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Delay jitter (ms)

E
C

D
F

Backward path
Forward path
Round trip

(a) One-way delay jitter and rout-trip delay jitter.

0 2 4 6 8 10 12 14 16 18
x 10

7

−100

0

100

200

300

400

500

Time (ms)

Ji
tt

er
 (

m
s)

Forward−path jitter
Forward−path packet loss

Period 2Period 1

24 hours = 86,400,000 ms

(b) Forward-path delay jitter and packet loss.

0 2 4 6 8 10 12 14 16 18
x 10

7

−100

0

100

200

300

400

500

Time (ms)

Ji
tt

er
 (

m
s)

Backward−path jitter
Backward−path packet loss

24 hours = 86,400,000 ms

Period 1 Period 2

(c) Backward-path delay jitter and packet loss.
Fig. 8: One-way delay jitter and one-way packet loss over time.

used HTML4 and js to measure user perceived response time
[25]. Janc et al. employed js and Flash to estimate download
throughput and RTT [11]. Fathom, a Firefox extension, sup-
ports launching network measurements through js [12] while
Netalyzr uses Java Applet to do similar tasks [9].

While some non-cooperative tools have been developed to
measure one-way metrics, the majority of them were designed
as a client-side tool without considering the requirements of
server-side measurement [13]–[15], [26]–[29]. For example,
client’s firewall will filter out unsolicited TCP/UDP/ICMP
packets and thus renders some tools [13]–[15] useless. Some
tools only support one or two types of one-way metrics (e.g.,
Sting for packet loss [26], CapProbe for packet reordering
[15]). Although TRIO can measure one-way capacity on top
of OneProbe, the estimation of forward-path capacity may
be affected by the noise in the reverse path [28]. In summary,
none of these tools has the same capability as OWPScope.

V. CONCLUSION

We designed and implemented OWPScope, a novel server-
side system for measuring low-level one-way path metrics
without installing specific softwares or plugins at the client
side. It can penetrate client-side firewalls and conduct represen-
tative measurement by using packets carrying real application
data. Its capability results from exploiting the standard features
in HTML5/HTTP/TCP and correlating the information from
different layers. We have implemented OWPScope and the
extensive evaluations in a testbed and through Internet show
that OWPScope can effectively measure the metrics with low
overhead to the hosting server and the network.

VI. ACKNOWLEDGMENT

We appreciate the reviewers for their comments, and thank
ChengYan Wang and Guihua Wang for their contributions to
the preliminary version of OWPScope. This work is supported
in part by the CCF-Tencent Open Research Fund, the Hong
Kong GRF (No. PolyU 5389/13E), the National Natural Sci-
ence Foundation of China (No. 61202396,60903185), and the
Open Fund of Key Lab of Digital Signal and Image Processing
of Guangdong Province.

REFERENCES

[1] H. Balakrishnan, V. Padmanabhan, G. Fairhurst, and M. Sooriyabandara,
“TCP performance implication of network path asymmetry,” RFC 3449,
IETF, 2002.

[2] R. Krishnan, H.Madhyastha, S. Srinivasan, and S. Jain, “Moving beyond
end-to-end path information to optimize CDN performance,” in Proc.
ACM IMC, 2009.

[3] R. Mok, X. Luo, E. Chan, and R. Chang, “QDASH: a QoE-aware DASH
system,” in Proc. ACM MMSys, 2012.

[4] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive streaming with Festive,” in Proc. ACM
CoNext, 2012.

[5] R. Mahajan, M. Zhang, L. Poole, and V. Pai, “Uncovering performance
differences in backbone ISPs with Netdiff,” in Proc. NSDI, 2008.

[6] M. Z. Ying Zhang, Z. Morley Mao, “Detecting traffic differentiation in
backbone isps with NetPolice,” in Proc. ACM IMC, 2009.

[7] P. Kanuparthy and C. Dovrolis, “Pythia: Diagnosing performance prob-
lems in wide area providers,” in Proc. USENIX ATC, 2014.

[8] “perfsonar,” http://www.perfsonar.net/.
[9] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-

nating the edge network,” in Proc. ACM IMC, 2010.
[10] “Network diagnostic tool (NDT),” http://goo.gl/DXl2z8.
[11] A. Janc, C. Wills, and M. Claypool, “Network performance evaluation

in a web browser,” in Proc. IASTED PDCS, 2009.
[12] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman, N. Weaver,

and V. Paxson, “Fathom: a browser-based network measurement plat-
form,” in Proc. ACM IMC, 2012.

[13] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level
Internet path diagnosis,” in Proc. ACM SOSP, 2003.

[14] D. Croce, T. En-Najjary, G. Urvoy-Keller, and E. Biersack, “Capacity
estimation of ADSL links,” in Proc. ACM CoNEXT, 2008.

[15] R. Kapoor, L. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe:
A simple and accurate capacity estimation technique,” in Proc. ACM
SIGCOMM, 2004.

[16] J. Sommers, P. Barford, N. Duffield, and A. Ron, “A framework for
multi-objective sla compliance monitoring,” in Proc. INFOCOM, 2007.

[17] W3C, “Navigation timing,” http://www.w3.org/TR/navigation-timing/,
2012.

[18] ——, “Resource timing,” http://www.w3.org/TR/resource-timing/,
2012.

[19] ——, “High resolution time,” http://www.w3.org/TR/hr-time/, 2012.
[20] X. Zhou and P. Mieghem, “Reordering of IP packets in Internet,” in

Proc. PAM, 2004.
[21] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet dispersion tech-

niques and a capacity-estimation methodology,” IEEE/ACM Trans.
Netw., vol. 12, no. 6, 2004.

[22] T. Kohno, A. Broido, and K. Claffy, “Remote physical device finger-
printing,” IEEE TDSC, vol. 2, no. 2, 2005.

[23] I. Grigorik, “Measuring site speed with navigation timing,”
http://www.igvita.com, 2012.

[24] ——, “Measuring network performance with resource timing api,”
http://www.igvita.com/, 2013.

[25] R. Rajamony and M. Elnozahy, “Measuring client-perceived response
time on the WWW,” in Proc. USENIX USITS, 2001.

[26] S. Savage, “Sting: A TCP-based network measurement tool,” in Proc.
USENIX USITS, 1999.

[27] X. Luo, E. Chan, and R. Chang, “Design and implementation of TCP
data probes for reliable and metric-rich network path monitoring,” in
Proc.USENIX ATC, 2009.

[28] E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang, “Trio:
Measuring asymmetric capacity with three minimum round-trip times,”
in Proc. ACM CoNEXT, 2011.

[29] L. Xue, X. Luo, E. Chan, and X. Zhan, “Towards detecting target link
flooding attack,” in Proc. USENIX LISA, 2014.

