
This paper is included in the Proceedings of the
28th Large Installation System Administration Conference (LISA14).

November 9–14, 2014 • Seattle, WA

ISBN 978-1-931971-17-1

Open access to the
Proceedings of the 28th Large Installation

 System Administration Conference (LISA14)
is sponsored by USENIX

Towards Detecting Target Link Flooding Attack
Lei Xue, The Hong Kong Polytechnic University; Xiapu Luo, The Hong Kong Polytechnic

University Shenzen Research Institute; Edmond W. W. Chan and Xian Zhan,
The Hong Kong Polytechnic University

https://www.usenix.org/conference/lisa14/conference-program/presentation/xue

USENIX Association 28th Large Installation System Administration Conference (LISA14) 81

Towards Detecting Target Link Flooding Attack

Lei Xue†, Xiapu Luo†‡∗, Edmond W. W. Chan†, and Xian Zhan†

Department of Computing, The Hong Kong Polytechnic University†

The Hong Kong Polytechnic University Shenzhen Research Institute‡

{cslxue,csxluo}@comp.polyu.edu.hk, {edmond0chan,chichoxian}@gmail.com

Abstract
A new class of target link flooding attacks (LFA) can
cut off the Internet connections of a target area without
being detected because they employ legitimate flows to
congest selected links. Although new mechanisms for
defending against LFA have been proposed, the deploy-
ment issues limit their usages since they require modify-
ing routers. In this paper, we propose LinkScope, a novel
system that employs both the end-to-end and the hop-
by-hop network measurement techniques to capture ab-
normal path performance degradation for detecting LFA
and then correlate the performance data and traceroute
data to infer the target links or areas. Although the idea
is simple, we tackle a number of challenging issues, such
as conducting large-scale Internet measurement through
noncooperative measurement, assessing the performance
on asymmetric Internet paths, and detecting LFA. We
have implemented LinkScope with 7174 lines of C codes
and the extensive evaluation in a testbed and the Internet
show that LinkScope can quickly detect LFA with high
accuracy and low false positive rate.

Keywords: Network Security, Target Link Flooding
Attack, Noncooperative Internet Measurement

1 Introduction

DDoS attacks remain one of the major threats to the In-
ternet and recent years have witnessed a significant in-
crease in the number and the size of DDoS attacks [1,2],
not to mention the 300 Gbps direct flooding attacks on S-
pamhaus and the record-breaking 400 Gbps NTP reflec-
tion attack on CloudFlare. However, it is not difficult to
detect such bandwidth DDoS attacks, because the attack
traffic usually reaches the victim and has difference from
legitimate traffic [3].

Recent research discovered a new class of target link
flooding attacks (LFA) that can effectively cut off the In-

∗The corresponding author.

ternet connections of a target area (or guard area) without
being detected [4, 5]. More precisely, an attacker first s-
elects persistent links that connect the target area to the
Internet and have high flow density, and then instruct-
s bots to generate legitimate traffic between themselves
and public servers for congesting those links [5]. If the
paths among bots cover the target area, an attacker can al-
so send traffic among themselves to clog the network [4].

It is difficult to detect LFA because (1) the target links
are selected by an attacker. Since the target links may be
located in an AS different from that containing the target
area and the attack traffic will not reach the target area,
the victim may not even know he/she is under attack; (2)
each bot sends low-rate protocol-conforming traffic to
public servers, thus rendering signature-based detection
systems useless; (3) bots can change their traffic patterns
to evade the detection based on abnormal traffic patterns.
Although a few router-based approaches have been pro-
posed to defend against such attacks [6–8], their effec-
tiveness may be limited because they cannot be widely
deployed to the Internet immediately. Note that LFA has
been used by attackers to flood selected links of four ma-
jor Internet exchange points in Europe and Asia [6].

Therefore, it is desirable to have a practical system that
can help victims detect LFA and locate the links under
attack whenever possible so that victims may ask help
from upstream providers to mitigate the effect of LFA.
We fill this gap by proposing and implementing a system,
named LinkScope, which employs both end-to-end and
hop-by-hop network measurement techniques to achieve
this goal. The design of LinkScope exploits the nature of
LFA including (1) it causes severe congestion on persis-
tent links. Note that light congestion cannot disconnect
the target area from the Internet; (2) although the con-
gestion duration will be much shorter than that caused
by traditional bandwidth DDoS, the congestion period
caused by LFA should not be too short. Otherwise, it
cannot cause severe damage to the victim; (3) to cut of-
f the Internet connections of a target area, LFA has to

1

82 28th Large Installation System Administration Conference (LISA14) USENIX Association

continuously clog important links. Otherwise, the victim
can still access the Internet. LinkScope actively collects
samples of network path performance metrics and uses
abnormal performance degradation to detect LFA.

Although the basic idea is simple, our major contri-
butions lie in tackling a number of challenging issues to
realize a practical detection system, including:

1. Since the target links are selected by an attacker, a
user has to monitor as many paths as possible. How-
ever, the majority of existing network measuremen-
t systems have limited scalability because they re-
quire installing measurement tools on both ends of
each path [9]. We solve this issue from two aspect-
s. First, we design LinkScope as a noncooperative
measurement tool that only needs the installation on
one end of a path. Therefore it can cover much more
paths than existing systems. Second, we strategical-
ly select important paths for measurement.

2. Due to the prevalence of asymmetric routes [10], we
equip LinkScope with the capability to differentiate
the performance metrics on the forward path (i.e.,
from the host where LinkScope is running to a re-
mote host) and that on the reverse path. It empowers
a user to infer which path(s) is under attack.

3. Although network failures may also lead to abnor-
mal path metrics, they will not result in the same ef-
fect on all path metrics as that caused by LFA. For
example, LFA will cause temporal instead of per-
sistent congestion. By learning the normal profiles
of a set of path metrics, LinkScope can detect LFA,
differentiate it from network failures, and identify
different attack patterns.

4. By conducting hop-by-hop measurement,
LinkScope locates the target link or the target
area on the forward path. Although LinkScope may
not locate the target link on the reverse path in the
absence of reverse traceroute data, we will explore
possible solutions, such as reverse traceroute,
looking glass, etc, in future work.

We have implemented LinkScope with 7174 lines of
C codes and to the best of our knowledge LinkScope is
the first system that can conduct both end-to-end and
hop-by-hop noncooperative measurement. The exten-
sive evaluations in a testbed and the Internet show that
LinkScope can quickly detect LFA with high accuracy
and low false positive rate.

The rest of this paper is organized as follows. Section
2 describes LinkScope’s methodology and Section 3 de-
tails the design and implementation of LinkScope. The e-
valuation results obtained from a testbed and the Internet
are reported in Section 4. After introducing related work

in Section 5, we conclude the paper with future work in
Section 6.

2 Methodology

Topology
Analysis

(1)

Probing
(2)

Feature
Extraction

(3)

Detection
(4)

Localization
(5)

Additional End to End paths

Normal

AlertFeature
vectors

Measurement
results

End to End
paths

Figure 1: Major steps for detecting LFA and locating tar-
get links/areas.

Fig. 1 illustrates the major steps in our methodology
for detecting LFA and locating target links/areas when-
ever possible. The first step, detailed in Section 2.1, in-
volves identifying potential target links and enumerating
a set of end-to-end paths that cover potential target links.
Depending on the available resource, we conduct non-
cooperative Internet measurement on selected paths and
Section 2.2 describes the measurement method and the
corresponding performance metrics. Section 2.3 elabo-
rates on the third and the fourth steps where the feature
extraction algorithm turns raw measurement results into
feature vectors that will be fed into the detection mod-
ule for determining the existence of LFA. If there is no
attack, the system will continue the measurement. Other-
wise, the localization mechanism, introduced in Section
2.4, will be activated for inferring the links or areas under
attack.

2.1 Topology Analysis

Adopting the noncooperative measurement approach,
LinkScope only needs to be installed on one end of an
Internet path, which is named as a prober. The curren-
t implementation of LinkScope can use almost any web
server as the other end.

There are two common strategies to deploy LinkScope.
Fig. 2(a) shows the first one, named self-initiated mea-
surement, where LinkScope runs on hosts within the
guard area. By selecting Web servers in different au-
tonomous systems (AS), a user can measure many di-
verse Internet paths for covering all possible target links.
The second scenario, as illustrated in Fig. 2(b), is the
cloud-based measurement where LinkScope runs on a
group hosts outside the guard area (e.g., virtual machines
(VM) in different data centers) and measures the paths
between themselves and hosts close to the guard area or
even hosts within the guard area. Although the latter case
is similar to the scenario of utilizing cooperative mea-
surement systems that require the control of both ends

2

USENIX Association 28th Large Installation System Administration Conference (LISA14) 83

Prober in
guard area Public web

server

Guard area

Target link

Host in
guard area

(a) Self-initiated measurement.

Prober
Public web

server
Guard area

Target
link

Host in guard
area

(b) Cloud-based measurement.

Figure 2: Deployment strategies of LinkScope.

of a path, using LinkScope can simplify the deploymen-
t, because only one end needs to install LinkScope. By
running LinkScope on hosts in diverse networks and/or s-
electing web servers in various locations, the paths under
measurement may include all possible target links.

Given a guard area, we first construct the network
topology between it and its upstream ASes by perform-
ing paris-traceroute [11] from a group of hosts (e.g., VM
in clouds or looking glasses [12]) to web servers close
to or within the guard area, or using systems like Rock-
etfuel [13]. From the topology, we can identify potential
target links following the LFA’s strategy that selects per-
sistent links with high flow density [5]. The flow density
of a link is defined as the number of Internet paths be-
tween bots and public servers in the target area, which
include that link.

Given a set of potential target links denoted as L =
{l1, l2, ..., lM}, we select a set of paths for measurement,
which is indicated by P = {p1, p2, ..., pN}. Since there
may be more than one path traversing certain target links,
we define three rules to guide the path selection:

• For the ease of locating target links, paths that con-
tain one target link will be selected.

• The number of paths sharing the same remote host
should be minimized to avoid mutual interference.
It is desirable that each path has different remote
host.

• Similar to the second rule, the number of paths ini-
tialized by one prober should be minimized to avoid
self-induced congestion.

2.2 Measurement approaches
As LFA will congest the selected links, it will lead to
anomalies in the following path performance metrics, in-
cluding,

• Packet loss rate, which will increase because the
link is clogged;

• Round-trip time (RTT), which may also increase be-
cause of the full queue in routers under attack;

• Jitter, which may have large variations when bot-
s send intermittent bursts of packets to congest the
link [14], thus leading to variations in the queue
length;

• Number of loss pairs [15], which may increase as
a pair of probing packets may often see full queues
due to LFA;

• Available bandwidth, which will decrease because
the target link is congested;

• Packet reordering, which may increase if the router
under attack transmits packets through differen-
t routes;

• Connection failure rate, which may increase if the
target area has been isolated from the Internet due
to severe and continuous LFA.

Besides measuring the above metrics, LinkScope
should also support the following features:

• Conduct the measurements within a legitimate TCP
connection to avoid the biases or noises due to net-
work elements that process TCP/UDP packets in a
different manner and/or discard all but TCP packets
belonging to valid TCP connections.

• Perform both end-to-end and hop-by-hop measure-
ments. The former can quickly detect the anomalies
caused by LFA while the latter facilitates localizing
the target links/areas.

• Support the measurement of one-way path metrics
because of the prevalence of asymmetric routing.

To fulfill these requirements, LinkScope contains the
following three probing patterns:

3

84 28th Large Installation System Administration Conference (LISA14) USENIX Association

Client

Server

Ps(0),a(0) / Ps(1),a(1)

Ra(1),s(1) Ra(2),s(2)

Figure 3: Round trip probing (RTP) pattern.

2.2.1 Round Trip Probing (RTP)

We proposed the Round Trip Probing (RTP) pattern to
measure RTT, one-way packet loss, and one-way pack-
et reordering in [16]. As shown in Fig. 3, each RTP
measurement involves sending two back-to-back prob-
ing packets (i.e., Ps(0),a(0) and Ps(1),a(1)) with customized
TCP sequence number (i.e., s(0),s(1)) and acknowledge-
ment number (i.e., a(0) and a(1)) to the remote host. The
advertising window of each probing packet is set to 2
maximal segment size (MSS) and therefore each probing
packet will elicit one response packet (i.e., Ra(1),s(1) and
Ra(2),s(2)). By analyzing the sequence numbers and the
acknowledgement numbers in the response packets, we
can decide whether there is packet loss/packet reordering
occurred on the forward path or the reverse path. If the
server supports TCP options like timestamp or SACK,
they can ease the detection of forward path packet loss
[16]. Moreover, RTT can be measured as the duration
from sending Ps(0),a(0) to receiving Ra(1),s(1).

Client

Server

Ps(0),a(0) / Ps(1),a(1)

Ra(1),s(2) / Ra(2),s(2) / Ra(3),s(2)

Figure 4: Extended two way probing (eTWP) pattern
with w = 3.

2.2.2 Extended Two Way Probing (eTWP)

We proposed the original Two Way Probing (TWP) pat-
tern for measuring one-way capacity in [17]. The extend-
ed Two Way Probing (eTWP) pattern has similar probing
packets as that of TWP. The difference is that eTWP will
induce more response packets from the remote host than
TWP does. As shown in Fig. 4, TWP(or eTWP) involves
sending two back-to-back probing packets (i.e., Ps(0),a(0)
and Ps(1),a(1)). The first probing packet uses zero adver-
tising window to prevent the server from sending back
responses on the arrival of Ps(0),a(0). In TWP, the adver-
tising window in Ps(1),a(1) is equal to 2 MSS so that it will

trigger two packets from the server [17]. Since a pack-
et train can characterize more loss patterns than a packet
pair [18], we enlarge the advertising window in Ps(1),a(1)
from 2 to w (w > 2) in eTWP. Note that increasing w
requires LinkScope to handle more patterns of response
packets.

As the server may dispatch w packets back-to-back if
its congestion window allows, we can compute the time
gap between the first and the w-th packet, denoted as Gr,
and define θr to characterize the available bandwidth on
the reverse path.

θr =
MSS× (w−1)

Gr
. (1)

Note that θr may not be equal to the real available band-
width [19] but its reduction could indicate congestion
[20].

1

TTL
Load Packets

Measurement Packets

... h

hth hop1st hop ... hth hop

Time exceeded ICMP
Packets

... 1st hop

... h ... 1

TCP ACK
packet 2

TCP data
packet 1

TCP data
packet 2

TCP ACK
packet 1 Time exceeded ICMP

Packets

Figure 5: Modified recursive packet train (RPT) pattern.

2.2.3 Modified Recursive Packet Train (mRPT)

Hu et al. proposed the original recursive packet train
(RPT), which was employed in Pathneck for detecting
the location of a network path’s bottleneck [20]. The o-
riginal RPT consists of a group of load packets and a set
of TTL-limited measurement packets and Pathneck us-
es UDP packets to construct RPT. We modify RPT to
support end-to-end and hop-by-hop measurements in a
TCP connection and remove redundant packets. Fig.5
illustrates the modified RPT, denoted as mRPT, where
each rectangle is a probing packet and each parallelo-
gram indicates a response packet triggered by a probing
packet. mRPT has h pairs of small measurement pack-
ets, whose TTL values are equal to the number in those
rectangles. Since a router will send back a time exceed-
ed ICMP packet when a packet’s TTL becomes zero, a
pair of ICMP packets will be sent back after mRPT pass-
es through a router. We use GI(i) to denote the time
gap between the two ICMP packets from the i-th hop.
LinkScope does not use a fixed number of measuremen-
t packets (e.g., 30 in Pathneck [20]) because we do not
want them to reach the server and LFA usually targets on
links outside the victim’s network. Instead, LinkScope
first determines h by doing a traceroute.

4

USENIX Association 28th Large Installation System Administration Conference (LISA14) 85

The load packets are customized TCP packets that be-
long to an established TCP connection and carry an in-
valid checksum value or a TCP sequence number so that
they will be discarded by the server. There are two spe-
cial packets (i.e., R1 and R2) between the load packets
sand the measurement packets. They have the same size
as the load packets and work together to accomplish two
tasks: (1) each packet triggers the server to send back a
TCP ACK packet so that the prober can use the time gap
between these two ACK packets, denoted as GA, to esti-
mate the interval between the head and tail load packet;
(2) induce two TCP data packets from the server to start
the measurement through RTP [16]. To achieve these
goals, LinkScope prepares a long HTTP request whose
length is equal to two load packets and puts half of it to
R1 and the remaining part to R2. To force the server to
immediately send back an ACK packet on the arrival of
R1 and R2, we first send R2 and then R1, because a TCP
server will send back an ACK packet when it receives an
out-of-order TCP segment or a segment that fills a gap in
the sequence space [21].

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Hops

Θ
i (

M
b
/s

)

(a) Path from Korea to Hong Kong

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hops

Θ
i (

M
b
/s

)

(b) Path from Taiwan to Hong Kong

Figure 6: θi measured on two paths to Hong Kong.

To characterize the per-hop available bandwidth and
end-to-end available bandwidth, LinkScope defines θi

(i=1,. . . ,h) and θe as follows:

θi =
SL × (NL +2)+SM × (h− i)

GI(i)
, i = 1, . . . ,h,(2)

θe =
SL ×NL

GA
, (3)

where SL and SM denote the size of a load packet and that
of a measurement packet, respectively. NL is the number
of load packets.

Note that since the packet train structure cannot be
controlled after each hop, similar to θr, θi (or θe) may
not be an accurate estimate of per-hop available band-
width (or end-to-end available bandwidth) but their large
decrement indicates serious congestion [20]. Since LFA
will lead to severe congestion on target links, θi of the
target link or θe on the path covering the target link will
be throttled.

Fig.6 shows θi on two paths to a web server in our
campus, whose last four hops are located in the cam-
pus network. Since the last but two hops did not send
back ICMP packets, there is no θi on that hop. On the
path from Korea to Hong Kong, θi drops from around
80Mbps to around 9Mbps on the 7th hop. It is because
the bandwidth of each host in campus network is limited
to 10Mbps. On the path from Taiwan to Hong Kong, θi
is always around 9Mbps. It may be due to the fact the
first hop’s available bandwidth is around 9Mbps.

2.3 Anomaly detection

Table 1: Detail metrics measured during one probe.
Direction Metric Defination

Forward

θe Characterizing available bandwidth through mRPT.
RRFPL Packet loss rate from RTP.
RT FPL Packet loss rate from eTWP.
RRFPL2 Loss pair rate from RTP.
RT FPL2 Loss pair rate from eTWP.
RRFPR Packet reordering rate from RTP.
RT FPR Packet reordering rate from eTWP.

Reverse

θr Characterizing available bandwidth through eTWP.
RRRPL Packet loss rate from RTP.
RT RPL Packet loss rate from eTWP.
RRRPL2 Loss pair rate from RTP.
RT RPL2 Loss pair rate from eTWP.
RRRPR Packet reordering rate from RTP.
RT RPR Packet reordering rate from eTWP.

Round − trip

RT T Round-trip time.
JRT T Round-trip time variation (jitter).
FailRT P Connection failure rate in RTP.
FailTWP Connection failure rate in eTWP.

We define two metric vectors in Eqn. (4) and (5),
which cover selected performance metrics, for the for-
ward path and the reverse path, respectively. Table 1 lists
the meaning of each performance metric.

5

86 28th Large Installation System Administration Conference (LISA14) USENIX Association

−−−−⇀
Ff orward ={θe,RRFPL,RT FPL,RRFPL2,RT FPL2,RRFPR,

RT FPR,RT T,JRT T ,FailRT P,FailTWP}T

(4)

−−−−⇀
Freverse ={θr,RRRPL,RT RPL,RRRPL2,RT RPL2,RRRPR,

RT RPR,RT T,JRT T ,FailRT P,FailTWP}T
(5)

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Measurement timestamp

P
a
c
k
e
ts

 l
o
s
s
 r

a
te

Forward path packet loss rate from RTP
Reverse path packet loss rate from RTP
Forward path packet loss rate from TWP
Reverse path packet loss rate from TWP

(a) Packet loss rate.

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
0

50

100

150

200

Measurement timestamp

Θ
e
 (

M
b
/s

)

Θ
e
 between client and hop 8

Θ
e
 between client and hop 9

(b) θe

Figure 7: Performance of a path from Japan to Hong
Kong over 48 hours.

LinkScope keeps collecting samples of these metrics
and builds a normal profile for each path using the data in
the absence of LFA. Since the measurement results show
a diurnal pattern, we build the normal profile for each or
several hours per day. For example, Fig. 7(a) shows the
diurnal pattern of forward path packet loss rate and θe on
a path from Japan to Hong Kong over 48 hours.

Then, LinkScope uses the Mahalanobis distance [22]
to quantify the difference between the profile and a new
round of measurement results as follows:

DM(
−⇀
F) =

√
(
−⇀
F −

−⇀
λ)TΩ−1(

−⇀
F −

−⇀
λ)), (6)

where
−⇀
F is the metric vector from a round of measure-

ment results described in Section 3.
−⇀
λ denotes the mean

metric vector in the profile and Ω is the covariance ma-
trix .

Ω =
1

n−1

n

∑
i=1

(λi − λ̄)(λi − λ̄)T , (7)

where λi is the i-th metric in the profile, n is the number
of metrics and

λ̄ =
1
n

n

∑
i=1

λi. (8)

Finally, LinkScope employs the non-parametric cu-
mulative sum (CUSUM) algorithm [23] to capture the
abrupt changes in the Mahalanobis distance (i.e., DM).
The non-parametric CUSUM algorithm assumes that the
average distance is negative in normal situation and be-
comes positive when path is under attack. We use Dn
to denote the distance measured in n-th probe and turn
{Dn} into a new sequence {Xn} through

Xn = Dn −Dn, (9)
Dn = mean(Dn)+αstd(Dn), (10)

where α is an adjustable parameter, mean(Dn) is the
mean value of Dn, and std(Dn) is the standard deviation
of Dn. The non-parametric CUSUM algorithm defines a
new sequence {Yn} by Eqn. (11).

Yn =

{
(Yn−1 +Xn)

+, n > 0,
0, n = 0,

where x+ =

{
x, x > 0,
0, otherwise.

(11)
Since the Mahalanobis distance quantifies the dif-

ference between the profile and a new observation, a
measurement result showing better network performance
may also be regarded as anomalies. To remedy this prob-
lem, we only consider the alerts where the measured per-
formance metrics become worse than the normal profile
(e.g. smaller θe and larger packet loss rate) because of
the nature of LFA.

2.4 Locating the target link

P1 Pk-1

Hi Hi+1 Hi+k

Web serverProber

Hi+2

Server selected by bots

Bot Bot

Target
link

Hi-1H1

Figure 8: Locating the target links.

When performance anomaly is detected on a forward
path, LinkScope tries to locate the target link through t-
wo steps. We use an example shown in Fig.8 to illustrate
the steps, where bots send traffic to the server selected
by bots in order to congest the link between Hi and Hi+1.

6

USENIX Association 28th Large Installation System Administration Conference (LISA14) 87

First, based on the hop-by-hop measurement results from
mRPT, LinkScope knows that the path from H1 to Hi−1 is
not under attack. Second, according to the topology anal-
ysis, LinkScope will perform measurement on other path-
s that cover the hops after Hi, such as P1 going through
Hi+1 and Pk−1 covering Hi+k. If one new path (e.g. the
one covering Hi+ j) does not have poor performance like
the original path, then the target link is in the area from
Hi to Hi+ j−1. The rational behind this approach comes
from the nature of LFA that congests a selected link so
that all paths including that link will suffer from similar
performance degradation. By contrast, other paths will
not have similar patterns.

Since the paths identified in Section 2.1 may not cover
all hops on the original path, we propose the following
steps to look for new paths.

1. For a hop, Hk, we utilize high-speed scanning tool-
s such as Zmap [24] to look for web servers in
the same subnet as Hk, which can be determined
through systems like traceNET [25]. If a web server
is found, LinkScope performs traceroute to this we-
b server and checks whether the path to the server
goes through Hk.

2. We look for web servers located in the same AS as
Hk and then check whether the paths to those web
servers go through Hk.

3. We look for web servers located in the buddy prefix
[26]as Hk and then check whether the paths to those
web servers go through Hk.

4. If no such path can be found, we check next hop.

We acknowledge that this method may not be applied
to reverse paths because it is difficult to get the tracer-
oute on the reverse path (i.e., from the remote host to the
prober). In future work, we will explore two possible ap-
proaches to tackle this issue. First, the victim may com-
bine both self-initiated measurement and cloud-based
measurement using hosts under control after anomalies
are detected. Second, using reverse traceroute [27] or
looking glass [28] may be able to obtain the traceroute
on the reverse path.

3 LinkScope

In this section, we detail the design of LinkScope whose
architecture is illustrated in Fig. 9. We have implement-
ed LinkScope with 7174 lines of C codes and the exten-
sive evaluation results obtained in a testbed and the In-
ternet are reported in Section 4.

Configuration:

Anomaly detection

Raw socket

RTP Module eTWP Module

TCP connections manager

mRPT Module

NIC

Libpcap

Paths scheduler

Probes scheduler

RST packet
filter

Probing packet size, Response packet size, Max TTL (i.e., h)
for RPT, Number of load packets (i.e., NL), Size of load
packet(i.e., SL), Size of measurement packet(i.e., SM),
Number of RTP probes(i.e., NRTP), Number of TWP probes
(i.e., NTWP), Target URLs, ...

Measurement engine

Measurement manager

Figure 9: The architecture of LinkScope.

3.1 Measurement Manager

The original designs of RTP, TWP, and RPT are not lim-
ited to specific application layer protocol. We use HTTP
as the driving protocol because tremendous number of
web servers are publicly available for the measurement.
In future work, we will explore other protocols.

We also realize a tool named WebChecker to collect
basic information about the path and the remote server.
It runs Paris-traceroute [11] to determine the number of
hops between a prober and the server, and then sets h
so that the measurement packet in mRPT can reach the
network perimeter of the server.

WebChecker also enumerates suitable web objects in
a web server and output a set of URLs. It prefers to
fetching static web objects (e.g., figure, pdf, etc.) start-
ing from the front page of a web site and regards a web
object as a suitable one if its size is not less than 10K
bytes. Furthermore, similar to TBIT [29], WebCheck-
er will check whether the web server supports TCP op-
tions, including Timestamp, Selective Acknowledgmen-
t(SACK), and HTTP header options such as Range [30].
These options may simplify the process of LinkScope and
enhance its capability. For example, if the server sup-
ports MSS, LinkScope can control the size of response
packets. Supporting Timestamp and SACK can ease the
detection of forward path packet loss [16].

The paths scheduler in LinkScope manages a set of
probing processes, each of which conducts the measure-
ment for a path. To avoid self-induced congestion, the
path scheduler will determine when the measurement for
a certain path will be launched and how long a path will

7

88 28th Large Installation System Administration Conference (LISA14) USENIX Association

be measured. Currently, each path will be measured for
10 minutes. The probing packet size, the response pack-
et size, and the load packet size are set to 1500 bytes.
The number of load packets is 20 and the size of mea-
surement packet is 60 bytes. The number of RTP probes
and the number of TWP probes are equal to 30. All these
parameters can be configured by a user.

The collected measurement results will be sent to the
anomaly detection module for detecting LFA.

3.2 Measurement Engine

In the measurement engine, the probes scheduler man-
ages the measurements on a path. A round of measure-
ment consists of one probe based on the mRPT pattern,
NRT P probes based on the RTP pattern, and NTWP probes
based on the eTWP pattern. A probe consists of sending
the probing packets and processing the response packet-
s. After finishing a round of measurement, the probes
scheduler will deliver the parsed measurement results to
the anomaly detection module and schedule a new round
of measurement.

The mRPT, RTP, and eTWP modules are in charge
of preparing the probing packets and handling the re-
sponse packets according to the corresponding pattern-
s. Before conducting measurement based on mRPT,
LinkScope sets each measurement packet’s IPID to its T-
TL. Since each pair of measurement packets will trigger
two ICMP packets, LinkScope inspects the ICMP pack-
et’s payload, which contains the IP header and the first 8
bytes of the original packet’s data, for matching it to the
measurement packet.

It is worth noting that in each round of measuremen-
t for a path all probes are performed within one TCP
connection. Such approach can mitigate the negative ef-
fect due to firewall and instable routes, because stateful
firewall will drop packets that do not belong to any es-
tablished TCP connection and load balancer may em-
ploy the five tuple of <src IP, src Port, dst IP, dst Port,
Protocol> to select routes.

The TCP connections manager will establish and
maintain TCP connections. If the server supports TCP
options like MSS, Timestamp, and SACK, the TCP con-
nections manager will use MSS option to control the size
of response packet (i.e., the server will use the mini-
mal value between its MSS and the MSS announced by
LinkScope). It will also put the SACK-permitted option
and TCP timestamp option into the TCP SYN packet
sent from LinkScope to the server.

Since LinkScope needs to control the establishment of
TCP connections and customize probing packets (e.g.,
sequence number, acknowledgement number, advertis-
ing window), all packets are sent through raw socket.
Moreover, LinkScope uses the libpcap library to capture

all response packets and then parses them for computing
performance metrics.

PathScop

system

sy
n

syn
+ack

ac
k

...
netfilter/iptables

 r
st

d
ataac

k

×

Server

(a) Use netfilter/iptables.

PathScope

 system

server

sy
n

syn
+ack

ac
k ...

nth router

 r
st

tt
l=

n

d
ata ac

k

ic
m

p

×

(b) Modify TTL of RST packet

Figure 10: RST packet filter.

3.3 RST packet filter

Since LinkScope constructs all packets by itself and send-
s them out through raw socket, OS does not know how
to handle the response packets and therefore it will reply
with an RST packet to the server to close the TCP con-
nections. We employ two approaches to filter out RST
packets generated by OS.

As shown in Fig. 10(a), if the system supports netfil-
ter/iptables [31], we use it to drop all RST packets except
those generated by LinkScope. We differentiate the RST
packets from OS and that from LinkScope through the
IPID value in the IP header because LinkScope will set
the IPID value of its RST packets to a special value.

Since some hosts do not support netfilter/iptables,
such as those Planetlab nodes [32], we propose another
method as shown in Fig. 10(b). LinkScope first establish-
es a TCP connection with the web server using stream
socket (i.e., SOCK STREAM), and then uses the func-
tion setsockopt to set the TTL value in each packet gen-
erated by OS to a small value so that it will not reach the
web server. Moreover, LinkScope utilizes the libpcap li-
brary to capture the TCP three-way handshaking packets
generated by OS to record the initial sequence numbers
selected by the local host and the web server along with
other information related to the TCP connection, such as
source port, and TCP options. After that, LinkScope will
create and send probing packets through raw socket with
the help of such information.

8

USENIX Association 28th Large Installation System Administration Conference (LISA14) 89

4 Evaluation

We carry out extensive experiments in a test-bed and the
Internet to evaluate LinkScope’s functionality and over-
head.

4.1 Test bed

Fig. 11 shows the topology of our test bed that connect-
s to the Internet through the campus network. All hosts
run Ubuntu system. Host 1 and Host 2 act as attacker-
s and the public server used by attackers, respectively.
D-ITG [33] is used to generate traffic for congesting the
MikroTik router in red circle. The router serves as the
bottleneck with 10Mbps bandwidth. Host 3 is a bridge
for emulating packet loss and packet reordering and Host
4 is an NAT-enable router providing port forwarding in
order to connect the web server and the LAN to the In-
ternet. In our experiment, LAN denotes the guard area
and the web server is a public server that can be accessed
by nodes in the Internet. We deploy LinkScope on Plan-
etlab nodes and Amazon EC2 instances.

Campus Network

Switch 1 Switch 2Host 3 (Switch)

Web server

D-ITG (Host 2)

LAN

Host 4 (NAT)

Prober

D-ITG (Host 1)

Router

Attack traffic

P
ro

be
 tr

af
fic

Guard area
Testbed

Internet

Prober 1

Bottleneck

Figure 11: The topology of the testbed.

4.2 Emulated Attacks in the Test bed

To demonstrate that LinkScope can capture differen-
t kinds of LFA, we emulate four types of LFA in the
testbed and use the abnormal changes in θe to illustrate
the diverse effect due to different attacks. If the attacker
floods the bottleneck with high-volume traffic, all TCP
connections including the one for measurement are dis-
connected and θe becomes zero all the time. Therefore,
we did not show it.

Fig. 12(a) shows θe under pulsing LFA where the at-
tacker transmits high-volume bursts of traffic to congest
the bottleneck [14]. The attack traffic rate is 1600 packet-
s per second and the packet size is uniformly distributed
in the range of [600, 1400] bytes. In the absence of at-
tack, θe is close to the available bandwidth. Under the

attack, since the bottleneck is severely congested and all
connections are broken, θe becomes zero.

Fig.12(b) illustrates θe under LFA with two attack traf-
fic rates: 400 packets per second and 800 packets per
second. An attacker may change the attack traffic rate for
evading the detection. We can see that when the attack
rate decreases (or increases), θe increases (or decreases),
meaning that it can capture the changes in the attack traf-
fic rate.

Fig.12(c) represents θe under gradual LFA where the
attack traffic rate increases from zero to a value larger
than the capacity of the bottleneck. It emulates the sce-
nario of DDoS attacks in Internet where the traffic sent
from different bots may not reach the bottleneck simul-
taneously, thus showing the gradual increase in the at-
tack traffic rate. Although the TCP connection for mea-
surement was broken when the attack traffic rate almost
reached its maximal value, the decreasing trend of θe can
be employed to raise an early alarm.

Fig.12(d) demonstrates θe when a network elemen-
t randomly drops packets. It may be due to occasion-
al congestion or the use of random early drop (RED) in
routers. We can see that although θe varies its values are
still close to the available bandwidth.

Since LFA will cause severe intermittent congestion
on target links in order to cut off the Internet connec-
tions of the guard area, we can use different patterns in
performance metrics to distinguish it from other scenar-
ios, such as long-term flooding and cable cut which will
disable the Internet connection for quite a long period
of time, and even identify different types of attacks, as
demonstrated in Fig. 12.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Θ
e
 (Mb/s)

C
D

F

Figure 14: CDF of θe on path from Amsterdam to Hong
Kong.

4.3 Internet Probing

To evaluate the capability and the stability of LinkScope,
we run it on Planetlab nodes to measure paths to Hong
Kong for two days and paths to Taiwan for seven days.

9

90 28th Large Installation System Administration Conference (LISA14) USENIX Association

06:00:00 06:30:00 07:00:00
0

5

10

15

20

Measurement timestamp

Θ
e

 (
M

b
/s

)

(a) Pulsing LFA.

01:30:00 02:30:00 03:30:00 04:30:00
0

5

10

15

20

Measurement timestamp

Θ
e

 (
M

b
/s

)

(b) LFA with variant attack traffic rates.

03:45:00 04:15:00 04:45:00 05:15:00 05:45:00
0

20

40

60

80

100

Measurement timestamp

Θ
e
 (

M
b

/s
)

(c) Gradual LFA.

09:00:00 09:20:00 09:40:00 10:00:00
0

5

10

15

20

Measurement timestamp

Θ
e
 (

M
b

/s
)

(d) Random packet drop.

Figure 12: Available bandwidth measured with different attacks from Prober 1 to testbed.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Θ
e
 (Mb/s)

C
D

F

Figure 16: CDF of θe on path from Santa Barbara to
Taipei.

Fig.13 shows the performance metrics measured on
the path from Amsterdam to Hong Kong for two days. It
demonstrates the diurnal patterns in forward path/reverse
path packet loss, RTT, and jitter. The path performance
is better and more stable in the period from 00:00 to
12:00 than that during the period from 12:00 to 24:00.
The increased loss rate may affect the measurement of
θe as some measurement results deviate during the peri-
od from 12:00 to 24:00 as shown in Fig. 13(d). Fig.14
illustrates the CDF of θe on the path from Amsterdam to
Hong Kong, where θe concentrates on 9 Mb/s.

Fig.15 demonstrates the performance metrics mea-
sured on the path from Santa Barbara (US) to Taipei for
seven days. This path has stable good performance. For
example, RTT is around 150ms and the jitter is less than
10 shown Fig. 15(a). The loss rate is less than 2% and
there is no packet reordering. The estimated end-to-end
θe is around 75Mbps as illustrated in Fig. 15(d) and
Fig.16. Since LFA will cause severe congestion during
a short duration, it will cause obvious abrupt changes in
the performance metrics and get caught by LinkScope.

4.4 Detection Performance
We first evaluate LinkScope’s false positive rate using In-
ternet measurement results on different paths, and then
assess its detection rate using emulated attacks in our test
bed.

On the paths to Hong Kong, LinkScope conducts mea-
surement once per minute for two days (48 hours). We
divide the one-day data (24 hours) into 24 sets (one set
per hour), because features are changing over time. We
use the data obtained in the first day as the training da-
ta and use the remaining data to evaluate LinkScope’s
false positive rate. Table 2 lists the false positive rates
on eight paths to Hong Kong with different α . The first
four probers are Amazon EC2 VM and the last four are

10

USENIX Association 28th Large Installation System Administration Conference (LISA14) 91

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
0

20

40

60

80

100

120

140

160

180

200

R
T

T
 (

m
s
)

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
0

10

20

30

40

50

R
T

T
 j
it
te

r

Measurement timestamp

RTT
RTT jitter

(a) RTT and RTT jitter.

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
 0%

 5%

10%

15%

20%

25%

Measurement timestamp

P
a
c
k
e
t
lo

s
s
 r

a
te

Forward path packet loss rate
Reverse path packet loss rate

(b) Packet loss rate.

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00
 0%

1%

2%

3%

4%

5%

Measurement timestamp

P
a

c
k
e

t
re

o
rd

e
ri
n

g
 r

a
te

Forward path packet reordering rate
Reverse path packet reordering rate

(c) Packet reordering rate.

00:00:00 12:00:00 00:00:00 12:00:00 00:00:00

6

8

10

12

14

16

18

20

22

Measurement timestamp

Θ
e
 (

M
b

/s
)

(d) θe.

Figure 13: Performance metrics measured on the path from Amsterdam to Hong Kong for two days.

Planetlab nodes. In this experiment, we divide one-day
data equally into 24 segments. The false positive rates
are all less than 10% and it decreases when α increases,
because α serves as a threshold and a larger α may cov-
er more normal scenarios. Moreover, all false positive
rates on the path from South Carolina (PL node) to Hong
Kong are 0, because the performances of all metrics are
very stable during both days. Table 2 shows that all false
positive rates are smaller than 6% when α is not less than
30.

Table 3 shows false positive rate on the paths from five
Planetlab nodes and two Amazon EC2 hosts to Taiwan.
On these paths, LinkScope conducts measurement once
per ten minutes for seven days. We also take the data in
the first day as the training data and the remaining data
for evaluation. Table 3 shows that the increases of α
can decrease the false positive rate, except the path from
US West to So-net Entertainment where no false positive
detected, as a result of the stable performances during the
two days.

By inspecting false positive cases, we find that almost
all the false positives are due to connection failure. It
may happen even without attack. Take the path from
Tokyo to Hong Kong as an example, the connection fail-
ure rate in two days is 4.06%. This rate varies over time,
such as, 0.90% during the period from 00:00 to 12:00

and 7.5% for the period from 12:00-24:00, because the
network performance is much more unstable from 12:00
to 00:00 (such as shown in Fig.13). However, in the ab-
sence of LFA, the connection failures scatters over time
while the connection failures appear continuously in the
presence of LFA.

Table 4: Detection rate.
Training data path α = 10 α = 20 α = 30

20 probes path 1 100.0% 100.0% 100.0%
20 probes path 2 100.0% 100.0% 100.0%
40 probes path 1 100.0% 100.0% 100.0%
40 probes path 2 100.0% 100.0% 100.0%

To evaluate LinkScope’s detection rate, we emulate d-
ifferent attacks between Host 1 and Host 2 as shown
Fig.11. During the pulsing LFA and gradual LFA, the
detection rate are always 100%. Because when the at-
tack traffic rate is much higher than the available band-
width, the path is congested and none response packets
can be received from the destination all the time. Ta-
ble 4 lists the detection rates when the attack traffic rate
is a little higher than the bandwidth (1.2 times of band-
width). In this case, LinkScope can still receive some
response packets and compute the measurement result-
s. Table 4 shows that the anomaly detection rates are still

11

92 28th Large Installation System Administration Conference (LISA14) USENIX Association

30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04
0

20

40

60

80

100

120

140

160

180

200

R
T

T
 (

m
s
)

30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04
0

1

2

3

4

5

6

7

8

9

10

R
T

T
 j
it
te

r

Measurement timestamp

RTT
RTT jitter

(a) RTT and RTT jitter.

30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04
 0%

 2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Measurement timestamp

P
a

c
k
e

t
lo

s
s
 r

a
te

Forward path packet loss rate
Reverse path packet loss rate

(b) Packet loss rate.

30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04
 0%

 0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

Measurement timestamp

P
a

c
k
e

t
re

o
rd

e
ri
n

g
 r

a
te

Forward path packet reordering rate
Reverse path packet reordering rate

(c) Packet reordering rate.

30/03 31/03 01/04 02/04 03/04 04/04 05/04 06/04 07/04 08/04
0

50

100

150

200

250

300

Measurement timestamp

Θ
e
 (

M
b

/s
)

(d) θe

Figure 15: Performance metrics measured on the path from Santa Barbara to Taipei for seven days.

Table 2: False positive rate on paths to Hong Kong.
Prober type Path α = 10 α = 20 α = 30 α = 40 α = 50

EC2 Virginia - Hong Kong 6.32% 5.99% 5.12% 4.33% 3.67%
EC2 Tokyo - Hong Kong 5.88% 4.02% 2.85% 2.07% 1.94%
EC2 Ireland - Hong Kong 8.69% 7.24 5.75% 5.23% 4.58%
EC2 Sao Paulo - Hong Kong 5.80% 2.90% 2.52% 1.55% 1.16%

PL node Tokyo - Hong Kong 2.19% 1.19% 0.60% 0.60% 0.60%
PL node Amsterdam - Hong Kong 4.18% 2.61% 1.69% 1.30% 0.91%
PL node Beijing - Hong Kong 3.54% 2.96% 2.06% 2.67% 1.28
PL node South Carolina - Hong Kong 0 0 0 0 0

Table 3: False positive rate on paths to Taiwan with different configures.
Prober type Path α = 20 α = 30 α = 40

PL node Boston - Taipei 2.17% 1.45% 0.97%
PL node Urbana - Taipei 2.18% 1.69% 1.45%
PL node Turkey - Taipei 2.20% 2.19% 1.21%
PL node Tokyo - Taipei 1.59% 3.17% 3.17%
PL node Blacksburg - Taipei 1.76% 1.25% 1.00%
PL node Tokyo - ChungHwa Telecom 2.32% 1.45% 1.01%

EC2 Sao Paulo - Taichung 6.56% 4.01% 2.15%
EC2 US West - So-net Entertainment 0 0 0

100% though the attacks cannot fully clog the bottleneck. 4.5 System load
To evaluate the system load introduced by LinkScope,
we use htop [34] to measure the client’s and web serv-

12

USENIX Association 28th Large Installation System Administration Conference (LISA14) 93

Table 5: The CPU utilizations and Load average in the probing client and web server during measurement.
Probing

processes
Measurement

rate (Hz)
Probing client Web sever

Load average CPU utilization Load average CPU utilization
0 0 0.01 0.3% 0.00 0.5%
1 2 0.06 0.3% 0.00 0.5%
1 10 0.10 0.3% 0.01 0.6%
2 10 0.10 0.4% 0.01 0.6%

10 10 0.11 1.7% 0.02 0.7%
50 10 0.23 2.4% 0.08 0.8%
100 10 0.47 2.7% 0.09 0.8 %

er’s average load and average CPU utilization when
LinkScope runs with different configurations. The clien-
t, running Ubuntu 12.04 LTS system, is equipped with
Intel 3.4 GHz i7-4770 CPU, 16G memory, and 1Gbps
NIC, and the web server is equipped with Intel 2.83 GHz
Core(TM)2 Quad CPU and runs Ubuntu 12.04 LTS sys-
tem and Apache2.

Table 5 lists the results for both the client and the serv-
er. The first line represents the load and CPU utilization
without LinkScope and we ensure that no other routine
processes are executed on both machines during the mea-
surement. We can see that even when there are 100 prob-
ing process with 10Hz measurement rates, the average
loads and average CPU utilizations are still very low on
both machines, especially for the web server.

5 Related work

Network anomaly detection can be roughly divided into
two categories: performance related anomalies and se-
curity related anomalies [35]. The performance related
anomalies include transient congestion, file sever failure,
broadcast storms and so on, and security related network
anomalies are often due to DDoS attacks [36–39] that
flood the network to prevent legitimate users from ac-
cessing the services. PachScope employs various perfor-
mance metrics to detect a new class of target link flood-
ing attacks (LFA).

Anomaly detection attempts to find patterns in data,
which do not conform to expected normal behavior [40].
However, LFA can evade such detection because an at-
tacker instructs bots to generate legitimate traffic to con-
gest target links and the attack traffic will never reach the
victim’s security detection system. Instead of passively
inspecting traffic for discovering anomalies, LinkScope
conducts noncooperative active measurement to cover as
many paths as possible and captures the negative effect
of LFA on performance metrics.

Although active network measurement has been em-
ployed to detect network faults and connectivity prob-
lems [41–48], they cannot be directly used to detect and

locate LFA because of two major reasons. First, since L-
FA will cause temporal instead of persistent congestion,
existing systems that assume persistent connection prob-
lems cannot be used [41–43]. Second, since LFA avoid-
s causing BGP changes, previous techniques that rely
on route changes cannot be employed [44–47]. More-
over, the majority of active network measurement sys-
tems require installing software on both ends of a net-
work path, thus having limited scalability. To the best
of our knowledge, LinkScope is the first system that can
conduct both end-to-end and hop-by-hop noncoopera-
tive measurement, and takes into account the anomalies
caused by LFA.

Router-based approaches have been proposed to de-
fend against LFA and other smart DoS attacks [6–8, 49–
52], their effectiveness may be limited because they can-
not be widely deployed to the Internet immediately. By
contrast, LinkScope can be easily deployed because it
conducts noncooperative measurement that only requires
installation at one end of a network path. Although
LinkScope cannot defend against LFA, it can be used a-
long with traffic engineering tools to mitigate the effect
of LFA.

Existing network tomography techniques cannot be
applied to locate the target link, because they have many
impractical assumptions (e.g., multicast [53], source
routing [54]). Although binary tomography may be used
for identifying faulty network links [55], it just provides
coarse information [56] and and is not suitable for lo-
cating the link targeted by LFA, because it adopts as-
sumptions for network fault (e.g., only one highly con-
gested link in one path [57], faulty links nearest to the
source [58]). LFA can easily invalidate them. More-
over, the probers in network tomography create a mea-
surement mesh network [59,60] whereas in our scenarios
there is only one or a few probers that may not commu-
nicate with each other.

13

94 28th Large Installation System Administration Conference (LISA14) USENIX Association

6 Conclusion

In this paper, we propose a novel system, LinkScope,
to detect a new class of target link-flooding attacks (L-
FA) and locate the target link or area whenever possi-
ble. By exploiting the nature of LFA that causes severe
congestion on links that are important to the guard area,
LinkScope employs both the end-to-end and the hop-by-
hop network measurement techniques to capture abrup-
t performance degradation due to LFA. Then, it corre-
lates the measurement data and the traceroute data to in-
fer the target link or area. After addressing a number
of challenging issues, we have implemented LinkScope
with 7174 lines of C codes and conduct extensive evalu-
ation in a testbed and the Internet. The results show that
LinkScope can quickly detect LFA with high accuracy
and low false positive rate. In future work, we will con-
duct large-scale and continuous measurements to evalu-
ate LinkScope and investigate the optimal deployment of
LinkScope.

7 Acknowledgment

We thank the reviewers for their comments and sug-
gestions and Paul Krizak, in particular, for shepherding
our paper. This work is supported in part by the CCF-
Tencent Open Research Fund, the Hong Kong GRF (No.
PolyU 5389/13E), the National Natural Science Founda-
tion of China (No. 61202396,60903185), and the Open
Fund of Key Lab of Digital Signal and Image Processing
of Guangdong Province.

References

[1] Incapsula, “2013-2014 DDoS threat landscape report,”
2014.

[2] ARBOR, “DDoS and security reports,”
http://www.arbornetworks.com/asert/, 2014.

[3] M. Geva, A. Herzberg, and Y. Gev, “Bandwidth distribut-
ed denial of service: Attacks and defenses,” IEEE Secu-
rity and Privacy, Jan.-Feb. 2014.

[4] A. Studer and A. Perrig, “The coremelt attack,” in Proc.
ESORICS, 2009.

[5] M. Kang, S. Lee, and V. Gligor, “The crossfire attack,” in
Proc. IEEE Symp. on Security and Privacy, 2013.

[6] S. Lee, M. Kang, and V. Gligor, “Codef: collaborative de-
fense against large-scale link-flooding attacks,” in Proc.
ACM CoNEXT, 2013.

[7] S. Lee and V. Gligor, “Floc: Dependable link access for
legitimate traffic in flooding attacks,” in Proc. IEEE ICD-
CS, 2010.

[8] A. Athreya, X. Wang, Y. Kim, Y. Tian, and P. Tague,
“Resistance is not futile: Detecting ddos attacks without
packet inspection,” in Proc. WISA, 2013.

[9] M. Crovella and B. Krishnamurthy, Internet Measure-
ment: Infrastructure, Traffic and Applications. Wiley,
2006.

[10] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker,
“On routing asymmetry in the internet,” in Proc. IEEE
GLOBECOM, 2005.

[11] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira,
“Avoiding traceroute anomalies with Paris traceroute,” in
Proc. ACM IMC, 2006.

[12] A. Khan, T. Kwon, H. Kim, and Y. Choi, “AS-level topol-
ogy collection through looking glass servers,” in Proc.
ACM IMC, 2013.

[13] N. Spring, R. Mahajan, and D. Wetherall, “Measuring IS-
P topologies with rocketfuel,” in Proc. ACM SIGCOMM,
2002.

[14] X. Luo and R. Chang, “On a new class of pulsing Denial-
of-Service attacks and the defense,” in Proc. NDSS, 2005.

[15] E. Chan, X. Luo, W. Li, W. Fok, and R. K. Chang, “Mea-
surement of loss pairs in network paths,” in Proc. ACM
IMC, 2010.

[16] X. Luo, E. Chan, and R. Chang, “Design and implemen-
tation of TCP data probes for reliable and metric-rich net-
work path monitoring,” in Proc. USENIX ATC, 2009.

[17] E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang,
“TRIO: Measuring asymmetric capacity with three mini-
mum round-trip times,” in Proc. ACM CoNEXT, 2011.

[18] R. Koodli and R. Ravikanth, “One-way loss pattern sam-
ple metrics,” RFC 3357, Aug. 2002.

[19] J. Sommers, P. Barford, and W. Willinger, “Laboratory-
based calibration of available bandwidth estimation tool-
s,” Microprocess. Microsyst., vol. 31, no. 4, pp. 222–235,
2007.

[20] N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Lo-
cating internet bottlenecks: Algorithms, measurements,
and implications,” in Proc. ACM SIGCOMM, 2004.

[21] M. Allman, V. Paxson, and E. Blanton, “Rfc5681: Tcp
congestion control,” 2009.

[22] B. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster
Analysis, 5th ed. Wiley, 2011.

[23] B. Brodsky and B. Darkhovsky, Non-Parametric Statis-
tical Diagnosis Problems and Methods. Kluwer Aca-
demic Publishers, 2000.

14

USENIX Association 28th Large Installation System Administration Conference (LISA14) 95

[24] Z. Durumeric, E. Wustrow, and J. Halderman, “Zmap:
Fast internet-wide scanning and its security application-
s,” in Proc. 22nd USENIX Security Symposium, 2013, pp.
605–619.

[25] M. Tozal and K. Sarac, “Tracenet: An internet topology
data collector,” in Proc. ACM IMC, 2010.

[26] J. Li, T. Ehrenkranz, and P. Elliott, “Buddyguard: A
buddy system for fast and reliable detection of ip prefix
anomalies,” in Proc. IEEE ICNP, 2012.

[27] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott,
J. Sherry, P. Wesep, A. Krishnamurthy, and T. Anderson,
“Reverse traceroute,” in Proc. USENIX NSDI, 2010.

[28] A. Khan, T. Kwon, H. Kim, and Y. Choi, “As-level topol-
ogy collection through looking glass servers,” in Proc.
ACM IMC, 2013.

[29] J. Padhye and S. Floyd, “Identifying the TCP behavior of
web servers,” in Proc. ACM SIGCOMM, 2001.

[30] Y. Lin, R. Hwang, and F. Baker, Computer Networks: An
Open Source Approach. McGraw-Hill, 2011.

[31] Netfilter, http://www.netfilter.org.

[32] Planetlab, https://www.planet-lab.org.

[33] A. Dainotti, A. Botta, and A. Pescapè, “A tool for
the generation of realistic network workload for emerg-
ing networking scenarios,” Computer Networks, vol. 56,
no. 15, 2012.

[34] htop, http://hisham.hm/htop/.

[35] M. Thottan and C. Ji, “Anomaly detection in ip network-
s,” IEEE Trans. on Signal Processing, vol. 51, no. 8,
2003.

[36] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of
network-based defense mechanisms countering the dos
and ddos problems,” ACM Computing Surveys (CSUR),
vol. 39, no. 1, 2007.

[37] G. Loukas and G. Öke, “Protection against denial of ser-
vice attacks: a survey,” The Computer Journal, vol. 53,
no. 7, 2010.

[38] S. Zargar, J. Joshi, and D. Tipper, “A survey of defense
mechanisms against distributed denial of service (DDoS)
flooding attacks,” IEEE Communications Surveys & Tu-
torials, vol. 15, no. 4, 2013.

[39] M. Bhuyan, H. Kashyap, D. Bhattacharyya, and J. Kalita,
“Detecting distributed denial of service attacks: Method-
s, tools and future directions,” The Computer Journal,
Mar. 2013.

[40] M. Bhuyan, D. Bhattacharyya, and J. Kalita, “Network
anomaly detection: Methods, systems and tools,” Com-
munications Surveys & Tutorials, 2013.

[41] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular:
Understanding internet reliability through adaptive prob-
ing,” in Proc. ACM SIGCOMM, 2013.

[42] Y. Zhang, Z. Mao, and M. Zhang, “Detecting traffic dif-
ferentiation in backbone ISPs with NetPolice,” in Proc.
ACM IMC, 2009.

[43] E. Katz-Bassett, H. Madhyastha, J. John, A. Krishna-
murthy, D. Wetherall, and T. Anderson, “Studying black
holes in the internet with hubble,” in Proc. USENIX NS-
DI, 2008.

[44] Y. Liu, X. Luo, R. Chang, and J. Su, “Characterizing
Inter-Domain Rerouting by Betweenness Centrality af-
ter Disruptive Events,” IEEE Journal on Selected Areas
in Communications, vol. 31, no. 5, 2013.

[45] W. Fok, X. Luo, R. Mok, W. Li, Y. Liu, E. Chan,
and R. Chang, “Monoscope: Automating network fault-
s diagnosis based on active measurements,” in Proc. I-
FIP/IEEE IM, 2013.

[46] E. Chan, X. Luo, W. Fok, W. Li, and R. Chang, “Non-
cooperative diagnosis of submarine cable faults,” in Proc.
PAM, 2011.

[47] Y. Zhang, Z. Mao, and M. Zhang, “Effective diagnosis of
routing disruptions from end systems,” in Proc. USENIX
NSDI, 2008.

[48] X. Luo, L. Xue, C. Shi, Y. Shao, C. Qian, and E. Chan,
“On measuring one-way path metrics from a web server,”
in Proc. IEEE ICNP, 2014.

[49] A. Shevtekar and N. Ansari, “A router-based technique
to mitigate reduction of quality (roq) attacks,” Computer
Networks, vol. 52, no. 5, 2008.

[50] C. Zhang, Z. Cai, W. Chen, X. Luo, and J. Yin, “Flow
level detection and filtering of low-rate DDoS,” Comput-
er Networks, vol. 56, no. 15, 2012.

[51] C. Chang, S. Lee, B. Lin, and J. Wang, “The taming of
the shrew: mitigating low-rate tcp-targeted attack,” IEEE
Trans. On Network Service Management, Mar. 2010.

[52] X. Luo and R. Chang, “Optimizing the pulsing denial-of-
service attacks,” in Proc. IEEE DSN, 2005.

[53] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu,
“Network tomography: recent developments,” Statistical
Science, vol. 19, no. 3, 2004.

[54] L. Ma, T. He, K. Leung, A. Swami, and D. Towsley,
“Identifiability of link metrics based on end-to-end path
measurements,” in Proc. ACM IMC, 2013.

[55] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,
“NetDiagnoser: troubleshooting network unreachabili-
ties using end-to-end probes and routing data,” in Proc.
ACM CoNEXT, 2007.

15

96 28th Large Installation System Administration Conference (LISA14) USENIX Association

[56] S. Zarifzadeh, M. Gowdagere, and C. Dovrolis, “Range
tomography: combining the practicality of boolean to-
mography with the resolution of analog tomography,” in
Proc. ACM IMC, 2012.

[57] H. Nguyen and P. Thiran, “The boolean solution to the
congested ip link location problem:theory and practice,”
in Proc. IEEE INFOCOM, 2007.

[58] N. Duffield, P. Avenue, and F. Park, “Network tomog-
raphy of binary network performance characteristics,”
IEEE Trans. Information Theory, vol. 52, no. 12, 2006.

[59] Q. Zheng and G. Cao, “Minimizing probing cost and
achieving identifiability in probe based network link
monitoring,” IEEE Trans. Computers, vol. 62, no. 3,
2013.

[60] Y. Zhao, Y. Chen, and D. Bindel, “Towards unbiased
end-to-end network diagnosis,” IEEE/ACM Transaction
on Networking, vol. 17, no. 6, 2009.

16

