
Xu Z, Pang S, Zhang T et al. Cross project defect prediction via balanced distribution adaptation based transfer learning.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 34(5): 1039–1062 Sept. 2019. DOI 10.1007/s11390-019-

1959-z

Cross Project Defect Prediction via Balanced Distribution

Adaptation Based Transfer Learning

Zhou Xu1,2,3, Shuai Pang2, Tao Zhang1,4,∗, Senior Member, CCF, Xia-Pu Luo3,∗, Member, ACM, IEEE
Jin Liu2,4,5, Member, CCF, IEEE, Yu-Tian Tang3, Xiao Yu2,6, and Lei Xue3, Member, IEEE

1College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

2School of Computer Science, Wuhan University, Wuhan 430072, China

3Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China

4Key Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences

Beijing 100190, China

5Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

6Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China

E-mail: {zhouxullx, shuaipang}@whu.edu.cn; cstzhang@hrbeu.edu.cn; csxluo@comp.polyu.edu.hk
E-mail: jinliu@whu.edu.cn; csytang@comp.polyu.edu.hk; xiaoyu whu@yahoo.com; cslxue@comp.polyu.edu.hk

Received October 22, 2018; revised July 11, 2019.

Abstract Defect prediction assists the rational allocation of testing resources by detecting the potentially defective

software modules before releasing products. When a project has no historical labeled defect data, cross project defect

prediction (CPDP) is an alternative technique for this scenario. CPDP utilizes labeled defect data of an external project to

construct a classification model to predict the module labels of the current project. Transfer learning based CPDP methods

are the current mainstream. In general, such methods aim to minimize the distribution differences between the data of the

two projects. However, previous methods mainly focus on the marginal distribution difference but ignore the conditional

distribution difference, which will lead to unsatisfactory performance. In this work, we use a novel balanced distribution

adaptation (BDA) based transfer learning method to narrow this gap. BDA simultaneously considers the two kinds of

distribution differences and adaptively assigns different weights to them. To evaluate the effectiveness of BDA for CPDP

performance, we conduct experiments on 18 projects from four datasets using six indicators (i.e., F -measure, g-means,

Balance, AUC, EARecall, and EAF -measure). Compared with 12 baseline methods, BDA achieves average improvements

of 23.8%, 12.5%, 11.5%, 4.7%, 34.2%, and 33.7% in terms of the six indicators respectively over four datasets.

Keywords cross-project defect prediction, transfer learning, balancing distribution, effort-aware indicator

1 Introduction

We are living in an era which can be referred to

as software-defined everything[1]. However, defects are

inevitable in the source code of software and may

cause the failure of the product. Such a failure can

lead to poor user experience and even severe economic

losses. Thus, identifying the high-risk software mod-

ules that may contain defects before releasing the soft-

ware product is a critical activity for software quality

Regular Paper

This work was partially supported by the National Key Research and Development Program of China under Grant
No. 2018YFC1604000, the National Natural Science Foundation of China under Grant Nos. 61602258, 61572374, and U163620068,
the China Postdoctoral Science Foundation under Grant No. 2017M621247, the Natural Science Foundation of Heilongjiang Province
of China under Grant No. LH2019F008, Heilongjiang Postdoctoral Science Foundation under Grant No. LBH-Z17047, the Open
Fund of Key Laboratory of Network Assessment Technology from Chinese Academy of Sciences, Guangxi Key Laboratory of Trusted
Software under Grant No. kx201607, the Academic Team Building Plan for Young Scholars from Wuhan University under Grant
No. WHU2016012, and Hong Kong GRC (Research Grants Council) Project under Grant Nos. PolyU 152223/17E and PolyU
152239/18E.

∗Corresponding Author

©2019 Springer Science +Business Media, LLC & Science Press, China

1040 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

assurance[2]. Software defect prediction (SDP) appears

to alleviate this issue. SDP detects the most defect-

prone modules by analyzing the software history data

from the software repositories, such as version control

systems (e.g., GitHub and Subversion) and issue track-

ing systems (e.g., JIRA and Bugzilla).

Most existing studies on SDP focus on building pre-

diction models on the training data, i.e., historical la-

beled software modules, and then predicting the defect

labels of unlabeled modules within the same project,

which is referred to as within project defect prediction

(WPDP). The training data consist of a set of mod-

ule features and defect information (i.e., a binary class

label or the number of defects)[3]. The module fea-

tures can be collected from the source code or from

the code changes between successive versions. The de-

fect information can be extracted from the commit logs

or labeled by the domain experts. In general, training

an effective and robust SDP model needs sufficient la-

beled defect data. However, the process of labeling the

software modules is usually labor-intensive and time-

consuming. In particular, for ongoing or immature

projects, very little or no historical development data

are available to extract the label information. In such

a case, WPDP is infeasible.

Fortunately, there are publicly available labeled

software defect data online whose quality has been rec-

ognized by previous researchers. Existing studies pro-

posed to utilize the labeled data of an external project

(aka source project) to conduct SDP on the project

(aka target project) with limited or no labeled train-

ing data[4], which called cross-project defect predic-

tion (CPDP). However, distinct projects have diffe-

rent scales and functional complexity, which may lead

to the distribution differences between the data across

projects. Thus, the difficulty that needs to be solved for

CPDP is to eliminate the differences. Transfer learning

based and training data filter based CPDP methods are

adopted to address this issue. In this work, we focus on

the former ones which are commonly studied.

Transfer learning based CPDP methods transfer the

knowledge of the source project to annotate the tar-

get project with the aim to minimize the distribution

differences of the data between the two projects[5,6].

There are two kinds of distribution differences, i.e.,

the marginal and the conditional distribution diffe-

rences. The former one is the distribution of the

module features themselves, and the later one is the

distribution of the module labels given the values of

the module features. Previous transfer learning based

CPDP methods, like the method in [6], mainly focus

on adapting the marginal distribution difference. How-

ever, when the data of two projects are much more

dissimilar, the importance of the marginal distribu-

tion is higher than that of the conditional distribu-

tion, whereas when the data of two projects are similar,

the conditional distribution is more important than the

marginal distribution[7]. Thus only considering one dis-

tribution is not appropriate for all cross-project pairs

and will limit the CPDP performance on some cases.

To overcome this deficiency, the intuition here is to

simultaneously adapt the two kinds of distributions.

In this work, we introduce a novel balanced distribu-

tion adaptation (BDA)[7] based transfer learning as our

CPDP method to tackle the distribution adaptation

problem. More specifically, BDA not only considers

both marginal and conditional distribution differences

between the data of two projects, but also assigns diffe-

rent importance degrees to the two kinds of distribu-

tions, and thus it can adapt to various cross-project

pairs more effectively.

To simulate the CPDP scenario by using the BDA

method, we choose 18 projects from four benchmark

defect datasets as our studied corpora. To assess the

CPDP performance, we choose four traditional indica-

tors, i.e., F -measure, g-mean, Balance[8] and AUC[9],

and two effort-aware indicators, i.e., EARecall and

EAF -measure[10,11] as our evaluation measurement.

The experimental results show that BDA achieves the

best average indicator values in most cases compared

with six training data filter methods and six transfer

learning methods.

The main contributions of this paper are highlighted

as follows.

• We introduce a novel transfer learning method

BDA for CPDP. BDA combines the marginal and condi-

tional distribution to reduce the data distribution diffe-

rences between two projects. In addition, BDA also

considers the different importance degrees of the two

kinds of distribution differences with a balance factor.

• We perform sufficient experiments on total 66

cross-project pairs from 18 project data of four bench-

mark datasets to evaluate the effectiveness of BDA. The

experimental results show the superior of BDA com-

pared with 12 baseline CPDP methods.

Paper Organization. The remainder of the paper is

organized as follows. We introduce the related work

on exiting CPDP methods in Section 2. We describe

the technical details of the used BDA method in Sec-

tion 3. We present our experimental setup, such as

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1041

the research questions, benchmark datasets, and perfor-

mance indicators in Section 4. We analyze our experi-

mental results in Section 5. We discuss the impacts of

different regularization parameters, feature dimensions,

and classifiers on the BDA performance in Section 6.

We list four kinds of threats to validity in Section 7.

Finally, we give the conclusions of this paper and the

future work in Section 8.

2 Related Work

To the best of our knowledge, Briand et al.[12] were

the first to explore whether the CPDP model built on

one system for another system was worth investigating.

However, the experimental results on two java systems

implied that such a model achieved poor performance.

Another early study about CPDP is performed by Zim-

mermann et al.[13] The experimental results on total

622 cross-project pairs with logistic regression classifier

showed that only 3.4% pairs achieved satisfactory per-

formances. The reason of the disappointing results from

these early studies is that they conducted CPDP by us-

ing all modules of the source project to train the classifi-

cation model without considering the data distribution

differences of the two projects. To address this issue, re-

cently, researchers have proposed different methods to

narrow the gap of the distribution differences between

the cross project data. Existing related studies can be

roughly divided into two groups: the training data filter

based CPDP methods and the transfer learning based

CPDP methods.

2.1 Training Data Filter Based CPDP
Methods

The training data filter based CPDP methods se-

lect part of the modules from the source project based

on a specific rule, such as the similarity towards the

modules of the target project. These selected modules

are relevant to the modules of the target project, which

helps reduce the data distribution differences between

the two projects. Thus the classification model trained

on the selected modules is more targeted to the target

project.

To the best of our knowledge, Turhan et al.[14] were

among the first to introduce the concept of training

data filter into the CPDP task. They proposed a near-

est neighbor filter method, called NN-Filter, to select

some modules from the source project that are close to

the modules of the target project. More specifically,

for each module of the target project, NN-Filter se-

lects its top 10 nearest modules in the source project,

and then removes the duplication ones from those se-

lected modules. The remaining modules are used as

the training set to train the classification model. They

used the common features of 12 NASA projects to build

the cross-project model, and found that the model im-

proved the probability of detecting defects but also dra-

matically increased the false positive rate.

Peters et al.[15] proposed a module subset selection

strategy, called Peter-Filter, with a clustering method.

More specifically, Peter-Filter first combines the mod-

ules of the source and the target projects into a whole,

then uses the k-means clustering method to divide

the modules into several groups, and only reserves the

groups that contain at least one module of the target

project. For each module of the source project in the

remaining groups, Peter-Filter selects its nearest mod-

ule from the target project. Those selected modules are

deemed as the popular modules. Then for each selected

popular module, Peter-Filter selects its closest module

(called the greatest fan) from the source project as one

member of the final training set. The experiments on

56 defect data showed that Peter-Filter is more effec-

tive to improve the CPDP performance than NN-Filter

and better than the WPDP setting on small projects.

Kawata et al.[16] proposed a relevancy filter method

called DBSCAN (we call Kawata-Filter in this work) for

training set simplification. More specifically, Kawata-

Filter first mixes the modules of two projects, and then

employs the DBSCAN clustering method to cluster the

mixed modules into several groups. Kawata-Filter dis-

cards the groups that do not contain any module of the

target project. Then the modules of the source project

in the remaining groups are fed into the classification

model. The experiments on 56 defect data showed that

Kawata-Filter achieved better performance than NN-

Filter and Peter-Filter in terms of AUC and g-measure.

Following Kawata et al.’s work[16], Yu et al.[17] pro-

posed a new data filter method called DFAC (we call

Yu-Filter in this work). Compared with Kawata-Filter,

Yu-Filter just replaces the DBSCAN clustering method

with the agglomerative clustering method. All other

steps are the same. The experimental results on 15

defect data showed that Yu-Filter made a small perfor-

mance improvement compared with Kawata-Filter.

Different from the above studies, we address the is-

sue of data distribution differences for the CPDP task

by using a transfer learning method, not from the per-

spective of filtering the training data.

In addition, some previous studies[18−20] proposed

another type of data filter methods which aims to se-

1042 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

lect some source projects that are similar to the tar-

get project under the assumption that a set of source

projects are available. Different from these studies, we

focus on one-to-one CPDP, i.e., only using one project

as the source project without involving data selection

at the project level.

2.2 Transfer Learning Based CPDP Methods

Transfer learning based CPDP methods utilize var-

ious transfer learning methods to transform the data of

the source and the target projects into a new feature

space. In the new space, the distributions of the two

transformed data are more similar. Thus, the classi-

fication model trained on the new source project data

will be more effective than that trained on the original

data.

To the best of our knowledge, Ma et al.[5] were

among the first to introduce transfer learning into

CPDP. Instead of discarding some modules of the

source project, they proposed a transfer naive Bayes

(TNB) method to transfer the valuable information of

the source project into that of the target project. TNB

first utilizes the data gravitation formula to measure the

similarity of the modules of the source project to the

modules of the target project, assigns different weights

to the modules of the source project based on the simi-

larity, and then integrates the weight information into

the Bayes formula to develop a weighted Naive Bayes

method for transfer learning. The experiments on seven

defect data from dataset NASA and three defect data

from dataset SOFTLAB showed that TNB achieved

better performances than the NN-Filter method.

Nam et al.[6] proposed an extended transfer com-

ponent analysis (TCA) method, TCA+, to learn some

transfer components for cross project data in a kernel

Hilbert space. TCA+ first defines some rules to find

the optimum data normalization strategy, and then ap-

plies the original TCA method to make the data distri-

butions of the two projects closer. The experiments on

five defect data from the AEEEM dataset and three de-

fect data from the RELINK dataset showed that TCA+

achieved competitive performance compared with the

WPDP setting and the original TCA method.

Chen et al.[21] proposed a transfer learning method,

called double transfer boosting (DTB), for CPDP. DTB

first re-weights the modules of the source project based

on data gravitation formula and then applies a transfer

boosting method to eliminate some negative modules

from the source project. The experiments showed that

DTB outperformed four baseline CPDP methods and

achieved better performances than three WPDP meth-

ods. The main drawback of DTB is that the used trans-

fer boosting method needs the participation of some

labeled modules from the target project, which limits

its usage in the scenario that the target project has no

labeled modules.

Ryu et al.[22] proposed a transfer cost-sensitive

boosting (TCSBoost) method that considers both

knowledge transfer and class imbalance for CPDP.

TCSBoost first calculates the similarity weight between

the source and the target projects, employs a resam-

pling method to rebalance the data distribution of the

defective and the non-defective classes of the source

project, and then applies a cost-sensitive boost method

to deal with the distribution differences between the

two projects. Like the DTB method, TCSBoost re-

quires a small amount of labeled modules of the target

project, which hinders its usage in the general CPDP

scenario.

Liu et al.[23] proposed a two-phase transfer learning

(TPTL) model. In the first stage, TPTL selects two

source projects, having the highest distribution simila-

rity to the target project and the best performance re-

spectively, as candidates from a set of source projects.

In the second stage, TPTL utilizes the TCA+ method

to build two transfer learning models based on the two

candidates to conduct CPDP. The focus of this work is

on the selection of the candidate source projects.

These transfer learning based CPDP methods do

not take into full consideration of both the marginal

and the conditional distribution differences between the

cross project data. More specifically, the marginal dis-

tribution is the probability associated with a variate

without regarding to the value of the other variate. For

two dependent variates, the conditional distribution fo-

cuses on computing the probability associated with one

variate given information about the value of the other

variate[24]. In this work, we make a step forward to con-

sider both distribution differences simultaneously and

their different importance degrees, aiming to further

improve the CPDP performance.

3 Method

3.1 Notations

We first define some notations used in BDA.

Assume the source project as DS = {XS,YS} =

{xi
s,y

i
s}

ns

i=1, where xi
s denotes the i-th module, XS ∈

R
ns×ds denotes the feature set of the source project,

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1043

and ds and ns denote the feature dimension and the

number of modules respectively. In other words, the

row of matrix XS denotes the software modules and

the column of matrix XS denotes the module fea-

ture. In addition, yi
s denotes the label of the i-th

module and YS ∈ R
ns×1 denotes the label set of the

source project. Similarly, assume the target project

as DT = {XT,YT} = {xj
t ,y

j
t}

nt

j=1, where x
j
t denotes

the j-th module, XT ∈ R
nt×dt denotes the feature set

of the target project, and dt and nt denote the fea-

ture dimension and the number of modules respectively.

In our work, ds = dt, that is, the cross project data

share the same feature dimension. y
j
t denotes the la-

bel of the j-th module and YT ∈ R
nt×1 denotes the

label set of the target project. Note that the labels of

the target project are unknown and need to be pre-

dicted. In addition, we define the feature space of

source and target projects as Xs and Xt respectively,

and the label space of source and target projects as Ys

and Yt respectively. In the CPDP scenario, the de-

fect data of the two projects have the same feature

space, i.e., Xs = Xt and the same label space, i.e.,

Ys = Yt, but have different marginal distributions, i.e.,

P (xs) 6= P (xt) and different conditional distributions,

i.e., P (ys|xs) 6= P (yt|xt). For the CPDP task, BDA

adaptively minimizes the marginal distribution diffe-

rence, i.e., d(P (xs), P (xt)), and the conditional distri-

bution difference, i.e., d(P (ys|xs), P (yt|xt)) simultane-

ously, aiming at learning the labels yt of the data of the

target project DT by utilizing the labeled data of the

source project DS.

3.2 Balanced Distribution Adaptation (BDA)

The ideal transfer learning for CPDP should con-

sider both the marginal and the conditional distribution

differences between the source and the target projects.

That is, it needs to minimize the distance between DS

and DT as follows:

d(DS,DT)

= d(P (xs), P (xt)) + d(P (ys|xs), P (yt|xt)). (1)

However, the main drawback of (1) is that it treats

the importance of the two kinds of distributions equally.

However, when the dissimilarity of the two projects is

large, the margin distribution should be paid more at-

tention, whereas when the similarity of the two projects

is large, the conditional distribution should be more

concerned. Therefore, for different cross project data,

it is not reasonable to simply combine the two kinds of

distributions with the same importance (i.e., weight).

To overcome this deficiency, BDA is proposed to solve

this issue by adaptively assigning different weights to

the two kinds of distributions based on various cross-

project pairs. BDA is formulated as follows:

d(DS,DT) ≈ (1 − µ)d(P (xs), P (xt)) +

µd(P (ys|xs), P (yt|xt)), (2)

where µ ∈ [0, 1] is a balance factor that is used to

highlight different importance degrees of the two kinds

of distributions. When the dissimilarity of the cross

project data is larger, µ tends to be 0, which means

that the importance of the marginal distribution is em-

phasized; whereas when the cross project data are more

similar, µ tends to be 1, which means that the condi-

tional distribution is more important. Since the balance

factor µ can adaptively adjust the importance of the

two kinds of distributions for the specific cross-project

pair, BDA has the potential to generate a targeted

training set for the CPDP task.

However, the labels of the target project are not

available in advance because they are the outputs of

the CPDP task. In other words, yt is unknown, which

leads to that it is not feasible to calculate the term

P (yt|xt). An alternative way is to use the class condi-

tional distribution P (xt|yt) to approximate the condi-

tional distribution of the cross project data. The fact

here is that when the amount of modules is adequate,

the values of P (xt|yt) and P (yt|xt) are approximately

equal according to the sufficient statistics[25]. To calcu-

late the class conditional distribution, a basic classifier

is built on the source project data DS and the trained

model is used to predict the labels of the target project

data DT. Since the predicted labels may be not accu-

rate at first, multiple iterations are employed to refine

the labels until the results are stable.

To calculate the discrepancy between two marginal

distributions, i.e., d(P (xs), P (xt)), and the two condi-

tional distributions, i.e., d(P (ys|xs), P (yt|xt)) in (2),

the maximum mean discrepancy (MMD) method[26]

is applied to empirically estimate them. Then (2) is

rewritten as follows:

d(DS,DT)

= (1 − µ)||
1

ns

ns
∑

i=1

xi
s −

1

nt

nt
∑

j=1

x
j
t ||

2
H +

µ

C
∑

c=1

||
1

nc
s

∑

xi
s∈D

(c)
S

xi
s −

1

nc
t

∑

x
j
t∈D

(c)
T

x
j
t ||

2
H, (3)

1044 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

where H means the reproducing kernel Hilbert space,

C denotes the number of different labels (C = 2 in

the CPDP scenario), D
(c)
S and D

(c)
T denote the mod-

ules with label c in the source and the target projects

respectively, and nc
s = |D

(c)
S | and nc

t = |D
(c)
T | denote

the number of modules belonging to D
(c)
S and D

(c)
T re-

spectively. The first term and the second term in (3)

represent the marginal distribution discrepancy and the

conditional distribution discrepancy among the cross

project data, respectively.

Using the matrix tricks and regularization, (3) is

equal to the following formula:

min tr(ATX((1− µ)M0 + µ

C
∑

c=1

Mc)X
TX) + λ‖A‖2F

s.t. ATXHXTA = I, 0 6 µ 6 1, (4)

where X denotes the input data matrix that combines

the feature sets of the source project XS and the tar-

get project XT, A denotes a transformation matrix,

I ∈ R
(ns+nt)×(ns+nt) denotes the identity matrix, and

H = I − (1/n)1 denotes a centering matrix. In ad-

dition, M0 and Mc are MMD matrices that can be

calculated using (5) and (6) as follows:

(M0)ij =

1

n2
s

, if xi,xj ∈ DS,

1

n2
t

, if xi,xj ∈ DT,

−
1

nsnt
, otherwise,

(5)

(Mc)ij =

1

nc
s
2 , if xi,xj ∈ D

(c)
S ,

1

nc
t
2 , if xi,xj ∈ D

(c)
T ,

−
1

nc
sn

c
t

, if

xi ∈ D
(c)
S ,xj ∈ D

(c)
T ,

xi ∈ D
(c)
T ,xj ∈ D

(c)
S ,

0, otherwise.

(6)

The first term in (4) with balance factor µ is used to

adapt the importance degrees of the marginal and con-

ditional distributions, and the second term with para-

meter λ is a regularization term where ‖A‖2F is the

Frobenius norm. The first constraint condition is used

to ensure that the transformed data ATX preserve the

inner structure properties of the original data, and the

second one constrains the value range of the balance

factor µ.

To solve (4), we define the Lagrange multipliers as

Φ = (φ1, φ2, ..., φd), and then (4) can be rewritten as

follows:

L = tr(ATX((1− µ)M0 + µ
C
∑

c=1

Mc)X
TX) +

λ‖A‖2F + tr((I −ATXHXTA)Φ). (7)

We set the first-order derivative of (7) in terms of

A to 0, i.e., ∂L/∂A = 0, and the optimization is trans-

formed into a generalized eigendecomposition problem

as follows:

(X((1− µ)M0 + µ

C
∑

c=1

Mc)X
T + λI)A

= XHXTAΦ. (8)

As a result, the optimum transformation matrix A

is obtained as the solution of (8). Given a threshold

of feature dimension that we want to preserve for the

new feature set, we can get the transformed data of the

source and the target projects.

4 Experimental Setup

4.1 Research Questions

To evaluate the effectiveness of the BDA method for

the CPDP performance, we design the following two re-

search questions (RQ).

RQ1. Is BDA more effective than the training data

filter based CPDP methods?

Motivation. Training data filter based CPDP meth-

ods alleviate the data distribution differences of two

projects by selecting some modules from the source

project that are representative to the modules of the

target project. Such methods do not change the fea-

ture spaces of the two projects. However, some of the

discarded modules may contain important information

to distinguish the modules of different classes. Diffe-

rent from this kind of methods, BDA just transfers the

feature spaces while reserving all modules of the source

project avoiding the information loss. This question is

designed to investigate whether BDA is superior to the

training data filter based methods for CPDP perfor-

mance improvement.

RQ2. Does BDA perform better than the transfer

learning based CPDP methods?

Motivation. The distribution differences of the cross

project data come from two aspects: the marginal and

the conditional distribution differences. In addition, ac-

cording to the distinct similarity levels between the data

of the two projects, the importance degrees of the two

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1045

kinds of distributions vary. However, existing trans-

fer learning based CPDP methods neither simultane-

ously consider the two kinds of distributions, nor focus

on their different importance degrees. This question

is designed to investigate whether the method consi-

dering both distributions and their importance degrees

(i.e., BDA) will further improve the CPDP performance

compared with other transfer learning methods.

4.2 Benchmark Datasets

In this work, we conduct large-scale experiments on

four defect benchmark datasets, including the AEEEM,

NASA, SOFTLAB, and RELINK datasets.

• AEEEM Dataset. This dataset was denoted

by D’Ambros et al.[27] The name comes from the

first letter of its five projects, i.e., Apache Lucene

(LC), Equinox (EQ), Eclipse JDT Core (JDT), Eclipse

PDE UI (PDE), and Mylyn (ML). Each project data

have 61 features, including 17 source code features,

five previous-defect features, five entropy-of-change fea-

tures, 17 entropy-of-source-code features, and 17 churn-

of-source code features[27]. The linearly decayed en-

tropy based and weighted churn based features are ver-

ified to be closely related to defect information.

• NASA Dataset. This dataset is the most

popular defect data in previous defect prediction

studies[8,28−33]. The project data are extracted from

a software system or sub-system and consist of a set

of static code features, including McCabe complexity,

Halstead complexity, and some miscellaneous features.

These features are informative predictors to the soft-

ware quality. In this work, we use five out of 14 project

data (i.e., CM1, MW1, PC1, PC3, and PC4) as our

studied corpora since they share the same 38 features.

• SOFTLAB Dataset. The five project data, i.e.,

ar1, ar3, ar4, ar5, and ar6 in this dataset come from

a Turkish software company which develops embedded

controllers for home appliances[34]. Each project data

consist of 29 static code features.

• RELINK Dataset. This dataset, denoted by Wu

et al.[35], contains three projects, i.e., Apache HTTP

Server (Apache), OpenIntents Safe (Safe), and ZXing.

Each data include 26 static code features. The links be-

tween the defect information and the change logs have

been manually verified.

The basic properties for each project data in the

four benchmark datasets are presented in Table 1.

The first four columns report the dataset name, the

project name, a brief description of the project, and the

development language (lang.), respectively. # F, # M,

DM, and % DM denote the number of features, the

number of modules, the number of defective modules,

and the percentage of defective modules, respectively.

The last column lists the prediction granularity (gran.)

of the modules. Each module represents a class, a func-

tion, or a file at different granularity levels.

Table 1. Properties of Projects in 4 Benchmark Datasets

Dataset Project Description Lang. # F # M # DM % DM (%) Gran.

AEEEM EQ OSGi framework Java 61 324 129 39.8 Class

JDT IDE development 997 206 20.7

LC Search Engine library 691 64 9.3

ML Task management 1 862 245 13.2

PDE IDE development 1 497 209 14.0

NASA CM1 Spacecraft instrument C 38 327 42 12.8 Function

MW1 A zero gravity experiment about combustion 251 25 10.0

PC1 Flight software for earth orbiting satellite 696 55 7.9

PC3 Flight software for earth orbiting satellite 1 073 132 12.3

PC4 Flight software for earth orbiting satellite 1 276 176 13.8

SOFTLAB ar1 Embedded controller for white-goods C 29 121 9 7.4 Function

ar3 Washing machine 63 8 12.7

ar4 Dishwasher 107 20 18.7

ar5 Refrigerator 36 8 22.2

ar6 Embedded controller for white goods 102 15 14.7

RELINK Apache Web server Java 26 194 98 50.5 File

Safe Security 56 22 39.3

Zxing Bar-code scanning library 399 118 29.6

1046 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

4.3 Classification Model

In this work, we select the logistic regression (LR)

classifier[36] to train the CPDP classification model.

This classifier is an extension of the linear regression

model with logistic function and frequently used in pre-

vious defect prediction studies[6,13,29,37−44]. We use

the third-party implementation, i.e., the LIBLINEAR

package[45], following the previous studies[6,42−44]. We

will discuss the impacts of different classifiers on the

CPDP performance of BDA in Subsection 6.3.

4.4 Performance Indicators

It is a typical binary classification for predicting

whether a module in the target project is defective or

not. To evaluate the effectiveness of the BDA method

for CPDP, we employ six commonly-used indicators in

previous defect prediction studies as our performance

measures, including four traditional indicators (i.e., F -

measure, g-mean, Balance, and AUC) and two effort-

aware indicators (i.e., EARecall and EAF -measure).

Before giving the definitions of these indicators, we first

introduce some basic terms.

For a binary classification task, there are four possi-

ble outputs: true positive (TP) denotes the number

of actually defective modules that are correctly pre-

dicted; true negative (TN) denotes the number of actu-

ally non-defective modules that are correctly predicted;

false positive (FP) denotes the number of actually non-

defective modules that are incorrectly predicted; false

negative (FN) denotes the number of actually defec-

tive modules that are incorrectly predicted. Given the

four terms, we can obtain another three basic terms:

the possibility of detection (pd or recall) is defined as
TP

TP+FN , the possibility of false alarm (pf) is defined as
FP

FP+TN , and the precision is defined as TP
TP+FP .

F -measure is the harmonic average of the precision

and recall. Its general formula is defined as follows

F -measure =
(1 + θ2)× precision× recall

θ2 × precision+ recall
, (9)

where θ is a positive real parameter to emphasize the

importance of the recall and the precision. There are

three commonly-used types of F -measure, including F1

(θ = 1), F0.5 (θ = 0.5), and F2 (θ = 2). There-

into, F2 gives higher weight to recall than to precision,

which means that it places more emphasis on FN[46].

In SDP application, defective modules are the main

focuses because they can cause the software failure.

Therefore, an effective SDP method should correctly

detect more defective modules, which is related to the

definition of recall. Thus, in this work, we follow pre-

vious studies[47−49] to choose F -measure with θ = 2 as

one of our performance indicators.

g-mean is the geometric mean of recall and 1-pf as

g-mean =

√

(
TN

TN + FP
)(

TP

TP + FN
).

Balance is proposed by [8] which calculates the

Euclidean distance between the actual (pd, pf) point

and the optimal (pd′, pf ′), i.e, (1, 0). This indica-

tor is frequently used in previous defect prediction

studies[8,50−52]. Balance is defined as follows:

Balance = 1−

√

(0− pf)2 + (1− pd)2

2
.

AUC calculates the area under the ROC curve to

measure the performance of a classification model[53].

The ROC curve is a two-dimensional plane with pd as

the y-axis and pf as the x-axis. AUC is independent of

the classification threshold.

Effort-aware F -measure (EAF -measure) is calcu-

lated under the scenario that only limited test efforts

are available for quality assurance activities. Ideally,

the testers expect to obtain greater profits within fewer

test efforts. The lines of code (LOC) that are inspected

during the testing process are treated as the test ef-

forts and the percentage of discovered actually defective

modules is treated as the profits. In general, the availa-

ble test efforts are set to 20% of total LOC. We follow

the previous studies[10,11,54] to calculate EAF -measure.

The calculation process is described as follows. 1) We

train a classification model on the transformed source

project data and predict the transformed target project

data into two groups, i.e., the predicted defective group

and the predicted non-defective group. 2) The modules

in the two groups are sorted in ascending order based

on their LOC value individually. 3) We merge the two

sorting results in which the result of the predicted defec-

tive group is listed on the top. 4) We imitate the testers

to inspect the modules one by one and record the cu-

mulative percentage of the inspected LOC. 5) We stop

the inspection process until the cumulative percentage

first reaches 20% of total LOC. 6) We count the follow-

ing three terms: tnd (denoting the number of defective

modules in the target project), t′n (denoting the num-

ber of inspected modules within the inspection of 20%

of LOC), and t′nd (denoting the number of discovered

actually defective modules within the inspection of 20%

of LOC).

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1047

After obtaining the three terms, we can calculate

two additional indicators effort-aware precision (EA-

Precision) and effort-aware recall (EARecall) as follows.

EAPrecision = t′nd/t
′
n,

EARecall = t′nd/tnd.

Like the definition of F -measure, EAF -measure is de-

fined as (EAPrecision and EARecall are abbreviated to

EAP and EAR, respectively):

EAF -measure =
(1 + θ21)× EAP × EAR

θ21 × EAP + EAR
. (10)

Like F -measure, we also set θ1 to 2 for EAF -measure.

In addition, if the denominators in (9) and (10) are

equal to 0, F -measure and EAF -measure make no

sense. At this point, we set F -measure and EAF -

measure to 0, which denotes the worst performance.

4.5 Cross-Project Prediction Setting

In this work, we organize the cross-project setting

on the defect data within the same benchmark dataset

and conduct one-to-one CPDP. For example, if the de-

fect data of project EQ in the AEEEM dataset are

selected as the target project data, total four cross-

project pairs are formed by treating other four projects

in the AEEEM dataset as the source project one by one.

Thus, we can obtain 20, 20, 20, and 6 cross-project pairs

for the AEEEM dataset, the NASA dataset, the SOFT-

LAB dataset, and the RELINK dataset, respectively.

4.6 Parameter Configuration

In the BDA method, there are four parameters that

need to be specified. 1) For the regularization parame-

ter λ in (8), we set it to 0.1 and will discuss the impacts

of different λ values on the CPDP performance of BDA

in Subsection 6.2. 2) As mentioned in Subsection 3.2,

we use multiple iterations to refine the predicted la-

bels. In our experiment, we set the maximal iterations

to 10. 3) For the balance factor µ in (8), it is a project-

specific parameter, which means that the µ value varies

for different cross-project pairs. In other words, the µ

value is estimated based on the data distributions of the

two projects. Unfortunately, there is no effective way

for such estimation[7]. In a real application scenario, it

is feasible to use the cross-validation strategy to deter-

mine the optimum µ value. Since this work just makes

an initial exploration to investigate whether considering

both two kinds of distributions with different weights

can further improve the CPDP performance, we set 11

different µ values, i.e., 0, 0.1,..., 0.9, 1, and run BDA on

each µ value to search the optimum value. 4) For the

desired feature dimensions of the transformed source

and target projects, in this work, we just choose to re-

serve 5% of total feature number and will discuss the

impacts of different feature dimensions on the CPDP

performance of BDA in Subsection 6.1. The code of

BDA and the used benchmark datasets are available in

our online supplementary materials 1○.

4.7 Statistical Test

In this work, the Frideman test with a post-hoc test

(called Nemenyi test)[55] is employed to analyze the

performance differences between DBA and the base-

line methods with the significant level α at 0.05. The

advantage of this test is that it does not require the

performance values to follow a particular distribution.

The performance values among the methods have sta-

tistically significant differences when the Friedman test

gets a small p value (less than 0.05). If the significant

differences exist, then the Nemenyi test is used to find

which methods have or do not have significant diffe-

rences with each other. More specifically, for a method

pair, if their rank difference exceeds a critical difference

(CD), then the two methods are deemed to have signif-

icant differences; on the contrary, they have no signifi-

cant differences. The CD value is calculated as follows:

CD = q(α,L)

√

L(L+ 1)

6M
,

where L denotes the number of methods compared, M

denotes the number of cross-project pairs, and q(α,L) is

a critical value based on L and the significance level α

which is available online 2○. The Frideman test with the

Nemenyi test is widely adopted in previous studies to

statistically analyze the differences among various SDP

methods[27,29,39,43,44,47,56,57].

Original Nemenyi test has a limitation that it may

generate the overlapping groups for the methods[30,57].

In other words, Nemenyi test may assign a method into

multiple groups in which the methods in the same group

have no significant differences while the methods in dis-

tinct groups have significant differences. In this work,

we follow the strategy in [57] to remedy this drawback.

More specifically, we define the best rank and the worst

1○https://sites.google.com/view/bda-cpdp/, July 2019.
2○http://www.cin.ufpe.br/˜fatc/AM/Nemenyi critval.pdf, July 2019.

1048 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

rank of these methods as rb and rw respectively. If

the absolute delta value |rb − rw| is larger than twice

the CD value, the methods are assigned to three non-

overlapping groups: 1) for the method with rank ri, if

the absolute delta value |ri − rb| is less than CD, then

it is assigned to the top rank group; 2) for the method

with rank rj , if the absolute delta value |rj − rw | is

less than CD, then it is assigned to the bottom rank

group; 3) the other methods are assigned to the middle

rank group. And if the absolute delta value |rb − rw|

lies between the CD value and twice the CD value, the

methods are assigned to two non-overlapping groups:

the method with rank rk is assigned to the top rank

group (or the bottom rank group) if rk is closer to rb
(or rw). In addition, if the absolute delta value |rb−rw|

is less than the CD value, all methods are divided into

one group without significant differences.

4.8 Experimental Environment

We conduct the experiments on our computer

which is equipped with a 16-core Intelr Xeonr E3-

1270@3.8 GHz CPU, 32.0 GB RAM. The BDA method

is run on MATLAB 2014a.

5 Experimental Results

5.1 Results Analysis for RQ1

5.1.1 Analysis Method for RQ1

To answer this question, we employ some training

data filter based CPDP models as our baseline methods

including ALL, NN-Filter, Peter-Filter, Yu-Filter, and

HISNN. ALL means that we use all the modules of the

source project to train the classification model without

any data filter process. We treat this method as a spe-

cial data filter method and the most basic setting for

comparison. NN-Filter, Peter-Filter, and Yu-Filter are

described in Subsection 2.1. HISNN[51] is a nearest-

neighbor based hybrid training data selection method.

This method uses a k-nearest neighbor to learn the lo-

cal knowledge and employs Naive Bayes to learn the

global knowledge. Note that HISNN uses a hybrid rule

to determine the module labels of the target project, we

could not calculate the AUC indicator without the out-

put probability. We also implement the Kawata-Filter

method with the parameter setting in the original pa-

per and try some other settings. However, this method

identifies many modules as the noise and discards them

on majority cross-project pairs, which makes it impos-

sible for us to get modules from the source project to

form the training set in most cases. Thus we do not

choose this method for comparison. In addition, Zhou

et al.[58] proposed a simple unsupervised model which

uses two simple ranking strategies to calculate the tra-

ditional binary classifier indicators and the effort-aware

indicators. More specifically, the method calculates

the traditional indicators by employing a ManualDown

technique which considers a larger module to be more

defect-prone and calculates the effort-aware indicators

by utilizing a ManualUP technique which considers a

smaller module to be more defect-prone. The two tech-

niques rank the modules based on their LOC in de-

scending order and ascending order, respectively. Since

the unsupervised model combines ManualUp and Man-

ualDown, we call it ManualUD. Like the method ALL,

ManualUD does not apply any data filter process, and

we add it in this question as a baseline method.

5.1.2 Analysis Results of RQ1

1) Results for BDA and 6 Training Data Filter

Based Baseline Methods on the AEEEM Dataset. Ta-

ble 2 reports the average values of the six indicators

for BDA and six training data filter methods on the

AEEEM dataset. The values in bold in the table de-

note the best performance, which is also the case in

all the following tables. It shows that BDA achieves

the best average performance values on all indicators.

More specifically, compared with the six baseline meth-

ods, BDA achieves improvements of 14.9%–102.6% in

terms of F -measure, of 6.2%–50.8% in terms of g-mean,

of 7.9%–49.8% in terms of Balance, of 8.7%–22.1% in

terms of AUC, of 21.3%–82.0% in terms of EARecall,

and of 22.9%–176.2% in terms of EAF -measure. The

detailed experimental results and performance improve-

ments are available in our online materials. Fig.1 visu-

alizes the corresponding results of statistical test. The

methods that have significant differences are drawn in

different colors. The p values (all less than 0.05) of

the Friedman test indicate that there exist significant

differences among the seven methods on all indicators.

The Nemenyi test results illustrate that BDA belongs

to the top rank group and always ranks the first on

all indicators. In addition, BDA performs no signifi-

cant differences compared with ManualUD in terms of

F -measure, g-mean, and Balance, and compared with

Yu-Filter in terms of AUC and EAF -measure.

2) Results for BDA and 6 Training Data Filter

Based Baseline Methods on the NASA Dataset. Ta-

ble 3 reports the average values of the six indicators for

the seven methods on the NASA dataset. It shows that

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1049

Table 2. Average Values of 6 Indicators for BDA and 6 Training Data Filter Methods on the AEEEM Dataset

Indicator ALL NN-Filter Peter-Filter Yu-Filter HISNN ManualUD BDA

F -measure 0.409 0.424 0.408 0.448 0.267 0.471 0.541

g-mean 0.599 0.610 0.584 0.616 0.463 0.657 0.698

Balance 0.587 0.600 0.578 0.607 0.464 0.644 0.695

AUC 0.668 0.663 0.611 0.686 — 0.670 0.746

EARecall 0.303 0.322 0.325 0.333 0.274 0.222 0.404

EAF -measure 0.273 0.287 0.273 0.292 0.242 0.130 0.359

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.1. Statistic results with the Nemenyi test among BAD and 6 training data filter based methods on the AEEEM dataset in terms
of 6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Table 3. Average Values of 6 Indicators for BDA and 6 Training Data Filter Methods on the NASA Dataset

Indicator ALL NN-Filter Peter-Filter Yu-Filter HISNN ManualUD BDA

F -measure 0.391 0.419 0.315 0.389 0.213 0.528 0.489

g-mean 0.609 0.638 0.538 0.615 0.406 0.645 0.684

Balance 0.607 0.636 0.536 0.608 0.435 0.640 0.677

AUC 0.645 0.686 0.563 0.687 — 0.651 0.722

EARecall 0.268 0.262 0.235 0.244 0.230 0.423 0.305

EAF -measure 0.218 0.218 0.178 0.218 0.169 0.263 0.245

BDA obtains the best average performance values in

terms of g-mean, Balance, and AUC, while ManualUD

performs the best in terms of the other three indica-

tors. More specifically, compared with the six baseline

methods, BDA achieves improvements of 6.0%–68.5%

in terms of g-mean, of 5.8%–55.6% in terms of Bal-

ance, and of 5.1%–28.2% in terms of AUC. However,

BDA is 7.4%, 27.9%, and 6.8% lower than ManualUD

in terms of F -measure, EARecall, and EAF -measure,

respectively. Fig.2 visualizes the corresponding results

of statistical test. The p values (all less than 0.05) of

the Friedman test indicate that the seven methods have

1050 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

significant differences among on all indicators. The re-

sults of the Nemenyi test illustrate that BDA belongs

to the top rank group on five indicators (excepts for

EAF -measure) and ranks the first or second on all indi-

cators. In addition, BAD has no significant differences

compared with 3, 4, 4, 3, 1, and 6 baseline methods in

terms of the six indicators, respectively.

3) Results for BDA and 6 Training Data Filter

Based Baseline Methods on the SOFTLAB Dataset.

Table 4 reports the average values of the six indica-

tors for the seven methods on the SOFTLAB dataset.

It shows that BDA gets the best average performance

values on all indicators again. More specifically, com-

pared with the six baseline methods, BDA achieves

improvements of 17.1%–77.2% in terms of F -measure,

of 7.0%–48.4% in terms of g-mean, of 6.0%–46.5% in

terms of Balance, of 2.9%–17.9% in terms of AUC,

of 31.5%–89.9% in terms of EARecall, and of 31.3%–

94.5% in terms of EAF -measure. Fig.3 visualizes the

corresponding results of statistical test. The p values

(all less than 0.05) of the Friedman test also indicate

that the seven methods have significant performance

differences on all indicators. The results of the Ne-

menyi test illustrate that BDA belongs to the top rank

group and ranks the first or second on all indicators.

In addition, BDA performs significantly better than all

baseline methods in terms of EAF -measure, but has no

significant differences compared with 1, 1, 3, 3, and 1

baseline methods in terms of the first five indicators,

respectively.

4) Results for BDA and 6 Training Data Filter

Based Baseline Methods on the RELINK Dataset. Ta-

ble 5 reports the average values of the six indicators for

the seven methods on the RELINK dataset. It shows

that ManualUD achieves the best average performance

on all indicators. But the average performance by BDA

is superior to that by the other baseline methods on five

indicators (except for AUC). More specifically, BDA is

7.3%, 8.5%, 8.8%, 5.5%, 19.7%, and 7.1% lower than

ManualUD in terms of the six indicators, respectively.

Fig.4 visualizes the corresponding results of the sta-

tistical test. The p values (all less than 0.05) of the

Friedman test indicate that there are significant diffe-

rences among the seven methods on five indicators ex-

cept for AUC. The results of the Nemenyi test illustrate

that BDA belongs to the top rank group in terms of

F -measure, g-mean, EARecall, and EAF -measure. In

addition, ManualUD performs significantly better than

all other methods in terms of Balance, and all methods

perform no significant differences in terms of AUC.

Summary. On average, compared with the six train-

ing data filter based baseline methods, BDA achieves

average improvements of 30.7%, 14.9%, 14.3%, 6.8%,

35.4%, and 39.1% in terms of six indicators respectively

over the four benchmark datasets.

5.2 Results Analysis for RQ2

5.2.1 Analysis Method for RQ2

To answer this question, we select six transfer learn-

ing based baseline methods for comparison. The brief

descriptions of the six baseline methods are as follows.

• TCA. The transfer component analysis (TCA)

method[26] only considers the margin distribution diffe-

rences across the project data.

• TCA+. Before performing TCA, the TCA+

method[6] selects a specific data normalization strategy

based on some designed rules to preprocess the data of

the two projects.

• CDT. We design a conditional distribution based

transfer learning (CDT) method that only considers the

conditional distribution differences between the data of

the two projects for comparison.

• JDT. JDT (called JDA in [25]) is a joint dis-

tributions based transfer learning method that consid-

ers both the marginal and the conditional distribution

differences with equal weights.

• TNB. Transfer naive Bayes (TNB)[5] introduces

the weight information of the modules into the Bayes

formula.

• FeSCH. The feature selection using clusters of hy-

brid data (FeSCH) method[4] is a two-step feature se-

lection based transfer learning method. This method

consists of a feature clustering stage with a density-

based clustering method and a feature selection stage

with a ranking strategy.

5.2.2 Analysis Reult of RQ2

1) Results for BDA and 6 Transfer Learning Based

Baseline Methods on the AEEEM Dataset. Table 6

reports the average values of the six indicators for

BDA and six transfer learning methods on the AEEEM

dataset. It shows that BDA achieves the best average

performance values on all indicators. More specifically,

compared with the six baseline methods, BDA achieves

improvements of 0.9%–15.1% in terms of F -measure,

of 2.3%–13.7% in terms of g-mean, of 2.7%–15.4% in

terms of Balance, of 0.0%–6.1% in terms of AUC, of

6.3%–17.4% in terms of EARecall, and of 5.3%–20.9%

in terms of EAF -measure.

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1051

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.2. Statistic results with the Nemenyi test among BAD and 6 training data filter based methods on the NASA dataset in terms of
6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Table 4. Average Values of 6 Indicators for BDA and 6 Training Data Filter Methods on the SOFTLAB Dataset

Indicator ALL NN-Filter Peter-Filter Yu-Filter HISNN ManualUD BDA

F -measure 0.534 0.552 0.537 0.522 0.355 0.529 0.629

g-mean 0.696 0.710 0.699 0.693 0.512 0.661 0.760

Balance 0.689 0.701 0.694 0.687 0.507 0.646 0.743

AUC 0.748 0.768 0.764 0.760 — 0.670 0.790

EARecall 0.258 0.254 0.240 0.198 0.286 0.284 0.376

EAF -measure 0.243 0.240 0.222 0.193 0.239 0.164 0.319

Table 5. Average Values of 6 Indicators for BDA and 6 Training Data Filter Methods on the RELINK Dataset

Indicator ALL NN-Filter Peter-Filter Yu-Filter HISNN ManualUD BDA

F -measure 0.543 0.534 0.569 0.546 0.500 0.698 0.647

g-mean 0.642 0.635 0.632 0.636 0.581 0.703 0.643

Balance 0.633 0.624 0.626 0.629 0.571 0.701 0.639

AUC 0.704 0.700 0.702 0.699 — 0.704 0.665

EARecall 0.233 0.219 0.280 0.231 0.267 0.451 0.362

EAF -measure 0.258 0.243 0.295 0.253 0.278 0.395 0.367

Fig.5 visualizes the corresponding results of statis-

tical test. The p values indicate that there exist sig-

nificant differences among the seven methods on all

indicators. The results of the Nemenyi test illustrate

that BDA always belongs to the top rank group and

ranks the first or second in terms of all indicators. In

addition, BDA has no significant differences compared

with JDT and CDT on F -measure, g-mean, AUC, and

EAF -measure, and compared with JDT on Balance and

EARecall.

2) Results for BDA and 6 Transfer Learning Based

Baseline Methods on the NASA Dataset. Table 7 re-

ports the average values of the six indicators for the

seven methods on the NASA dataset. It shows that

1052 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.3. Statistic results with the Nemenyi test among BAD and 6 training data filter based methods on the SOFTLAB dataset in terms
of 6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.4. Statistic results with the Nemenyi test among BAD and 6 training data filter based methods on the RELINK dataset in terms
of 6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1053

Table 6. Average Values of 6 Indicators for BDA and 6 Transfer Learning Methods on the AEEEM Dataset

Indicator TCA TCA+ CDT JDT TNB FeSCH BDA

F -measure 0.512 0.470 0.514 0.519 0.536 0.475 0.541

g-mean 0.680 0.638 0.680 0.682 0.614 0.647 0.698

Balance 0.674 0.645 0.676 0.677 0.602 0.637 0.695

AUC 0.746 0.728 0.735 0.741 0.725 0.703 0.746

EARecall 0.363 0.357 0.375 0.380 0.374 0.344 0.404

EAF -measure 0.326 0.320 0.337 0.341 0.297 0.308 0.359

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.5. Statistic results with the Nemenyi test among BAD and 6 transfer learning based methods on the AEEEM dataset in terms of
6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Table 7. Average Values of 6 Indicators for BDA and 6 Transfer Learning Methods on the NASA Dataset

Indicator TCA TCA+ CDT JDT TNB FeSCH BDA

F -measure 0.454 0.338 0.466 0.459 0.398 0.461 0.489

g-mean 0.663 0.526 0.671 0.667 0.621 0.667 0.684

Balance 0.662 0.572 0.668 0.664 0.613 0.660 0.677

AUC 0.715 0.644 0.717 0.720 0.708 0.726 0.722

EARecall 0.242 0.171 0.267 0.249 0.248 0.330 0.305

EAF -measure 0.206 0.148 0.223 0.210 0.222 0.268 0.245

BDA achieves the best average performance values on

the first three indicators, while FeSCH achieves the best

average performance values on the last three indica-

tors. More specifically, compared with the six baseline

methods, BDA achieves improvements of 4.9%–44.7%

in terms of F -measure, of 1.9%–30.0% in terms of g-

mean, and of 1.3%–18.4% in terms of Balance. How-

ever, BDA is 0.6%, 7.6%, and 8.6% lower than FeSCH

in terms of AUC, EARecall, and EAF -measure, respec-

tively. Fig.6 visualizes the corresponding results of the

statistical test. The p values show that there exist sig-

nificant differences among the seven methods on all in-

dicators. The results of the Nemenyi test illustrate that

BDA belongs to the top rank group but has no signifi-

1054 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.6. Statistic results with the Nemenyi test among BAD and 6 transfer learning based methods on the NASA dataset in terms of 6
indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Table 8. Average Values of 6 Indicators for BDA and 6 Transfer Learning Methods on the SOFTLAB Dataset

Indicator TCA TCA+ CDT JDT TNB FeSCH BDA

F -measure 0.529 0.463 0.564 0.566 0.536 0.464 0.629

g-mean 0.690 0.620 0.713 0.720 0.588 0.629 0.760

Balance 0.688 0.617 0.702 0.715 0.576 0.636 0.743

AUC 0.757 0.683 0.752 0.756 0.801 0.704 0.790

EARecall 0.183 0.227 0.295 0.249 0.254 0.214 0.376

EAF -measure 0.174 0.195 0.248 0.223 0.200 0.200 0.319

cant differences compared with JDT and FeSCH on all

indicators, compared with CDT on five indicators ex-

cept for EARecall, and compared with TNB on AUC.

3) Results for BDA and 6 Transfer Learning Based

Baseline Methods on the SOFTLAB Dataset. Table 8

reports the average values of the six indicators for the

seven methods on the SOFTLAB dataset. It shows that

BDA achieves the best average performance values on

five indicators except for AUC. More specifically, com-

pared with the six baseline methods, BDA achieves im-

provements of 11.1%–35.9% in terms of F -measure, of

5.6%–29.3% in terms of g-mean, of 3.9%–29.0% in terms

of Balance, of 27.5%–105.5% in terms of EARecall, and

of 28.6%–83.3% in terms of EAF -measure. However,

BDA is 1.4% lower than TNB in terms of AUC. Fig.7

visualizes the corresponding results of statistical test.

The p values show that there exist significant differences

among the seven methods on all indicators. The results

of the Nemenyi test illustrate that BDA belongs to the

top rank group and always ranks the first or second

on all indicators. In addition, BDA has no significant

differences compared with JDT and CDT on g-mean,

Balance, and EAF -measure, compared with JDT on

F -measure, and compared with TNB on AUC.

4) Results for BDA and 6 Transfer Learning Based

Baseline Methods on the RELINK Dataset. Table 9 re-

ports the average values of the six indicators for the

seven methods on the RELINK dataset. It shows that

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1055

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.7. Statistic results with the Nemenyi test among BAD and 6 transfer learning based methods on the SOFTLAB dataset in terms
of 6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

Table 9. Average Values of 6 Indicators for BDA and 6 Transfer Learning Methods on the RELINK Dataset

Indicator TCA TCA+ CDT JDT TNB FeSCH BDA

F -measure 0.537 0.399 0.571 0.578 0.587 0.545 0.647

g-mean 0.641 0.439 0.646 0.600 0.603 0.655 0.643

Balance 0.630 0.487 0.639 0.599 0.595 0.640 0.639

AUC 0.676 0.621 0.674 0.645 0.685 0.733 0.665

EARecall 0.229 0.335 0.277 0.320 0.301 0.219 0.362

EAF -measure 0.253 0.324 0.297 0.323 0.318 0.246 0.367

BDA achieves the best average performance values on

F -measure, EARecall and EAF -measure, while FeSCH

achieves the best performance values on other three in-

dicators. More specifically, compared with the six base-

line methods, BDA achieves improvements of 10.2%–

62.2% in terms of F -measure, of 8.1%–65.3% in terms

of EARecall, and of 13.3%–49.2% in terms of EAF -

measure. However, BDA is 0.5% and 1.8% lower than

CDT and FeSCH in terms of g-mean, 0.2% lower than

FeSCH in terms of Balance, and 1.6%, 1.3%, 2.9%,

and 9.3% lower than TCA, CDT, TNB, and FeSCH

respectively in terms of AUC. Fig.8 visualizes the cor-

responding results of the statistical test. The p values

reveal that there are significant performance differences

among the seven methods on three indicators except for

g-mean, Balance, and AUC. The results of the Nemenyi

test illustrate that BDA has no significant differences

compared with TNB and CDT on F -measure, com-

pared with JDT, TCA+, and TNB on EARecall and

EAF -measure, and compared with all baseline meth-

ods on g-mean, Balance, and AUC.

Summary. On average, compared with the six trans-

fer learning based baseline methods, BDA achieves ave-

rage improvements of 16.9%, 10.1%, 8.7%, 2.7%, 32.9%,

and 28.4% in terms of six indicators respectively over

the four benchmark datasets.

6 Discussion

In this section, we discuss the impacts of the diffe-

rent parameter settings and classifiers on our experi-

mental results.

1056 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

(b)(a)

(c)

(e)

(d)

(f)

-

-

- -

-

-

Fig.8. Statistic results with the Nemenyi test among BAD and 6 transfer learning based methods on the RELINK dataset in terms of
6 indicators. (a) F -measure. (b) g-mean. (c) Balance. (d) AUC. (e) EARecall. (f) EAF -measure.

6.1 Parameter Setting of the Selected Feature

Dimensions

After transforming the original data of two projects

into a new feature space, we empirically select 5% of

original feature dimensions to carry on our experiments.

In this subsection, we discuss the impacts of different

feature dimensions on the CPDP performance of BDA.

For this purpose, we set 20 different thresholds for fea-

ture dimensions, from 5% to 100% with a step of 5%,

for comparison. Fig.9 depicts the six average indicator

values of BDA when varying the thresholds of feature

dimensions on each benchmark dataset.

From Fig.9, we observe that on the AEEEM dataset,

the six average indicator values have a little change un-

der different thresholds. On the NASA dataset, the

six average indicator values under thresholds larger

than 15% keep stable and a little higher than that

under thresholds of 5% and 10%. On the SOFTLAB

dataset, the six average indicator values under thresh-

olds larger than 25% keep almost unchanged and lower

than that under small thresholds. Overall, BDA with

small thresholds achieves better average indicator val-

ues. On the RELINK dataset, the six average indicator

values under thresholds larger than 40% keep almost

stable. When the threshold is lower than 40%, the ave-

rage F -measure, EARecall, and EAF -measure values

decrease with the increasing of the threshold, while the

average g-mean, Balance, and AUC values oscillate.

Overall, BDA achieves similar performance with

larger thresholds and better performance with smaller

thresholds (except for the NASA dataset). From the

above analysis, the thresholds within 5%–20% can be a

better choice for BDA.

6.2 Parameter Setting of the Regularization

Parameter λ

As mentioned in Subsection 4.6, we set the regulari-

zation parameter λ value to 0.1 without any prior know-

ledge. In this subsection, we discuss the impacts of

different parameter λ values on the CPDP performance

of BDA. For this purpose, we empirically set 15 diffe-

rent parameter λ values, including 0.001–0.009 with a

step of 0.002, 0.01–0.09 with a step of 0.02, and 0.1–0.9

with a step of 0.2 for comparison. Fig.10 depicts the six

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1057

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold (%)

P
e
rf

o
rm

a
n
c
e

g-mean

Balance

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold (%)

P
e
rf

o
rm

a
n
c
e

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Threshold (%)

P
e
rf

o
rm

a
n
c
e

F-measure

g-mean

Balance

F-measure

g-mean

Balance

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-measure

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold (%)

P
e
rf

o
rm

a
n
c
e

F-measure

g-mean

Balance

F-measure

g-mean

Balance

F-measure

g-mean

Balance

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

(b)(a)

(c) (d)

Fig.9. Six average indicator values of BDA when varying the thresholds of feature dimension on each benchmark dataset. (a) AEEEM.
(b) NASA. (c) SOFTLAB. (d) RELINK.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Parameter (λ)

P
e
rf

o
rm

a
n
c
e

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Parameter (λ)

P
e
rf

o
rm

a
n
c
e

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Parameter (λ)

P
e
rf

o
rm

a
n
c
e

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Parameter (λ)

P
e
rf

o
rm

a
n
c
e

F-Measure

g-Mean

Balance

AUC

EARecall

EAF-Measure

100
100

100100

(b)(a)

(c) (d)

Fig.10. Six average indicator values of BDA with different parameter λ on each benchmark dataset. (a) AEEEM. (b) NASA. (c)
SOFTLAB. (d) RELINK.

1058 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

average indicator values of BDA with different λ values

on each benchmark dataset.

From Fig.10, we observe that on the AEEEM

dataset, the six average indicator values are barely af-

fected by different λ values. On the NASA dataset,

the whole trend is that the average indicator values de-

crease with the increasing of λ. On SOFTLAB dataset,

the overall trend is opposite to that on the NASA

dataset. On the RELINK dataset, the average EARe-

call and EAF -measure values increase with the increas-

ing of λ. Whereas the average F -measure, g-mean, Bal-

ance and AUC values fluctuate with different λ, thus we

cannot find a general rule for the four indicators.

From the above analysis, the parameter λ has diffe-

rent impacts on the average performance values of BDA

over different benchmark datasets. In other words, the

selection of the optimum parameter λ depends on the

specific dataset studied. In the future, we will try to

investigate what property of the dataset affects the se-

lection of this parameter.

6.3 Impacts of Different Classifiers on the

Performance of BDA

As mentioned in Subsection 4.3, we choose LR clas-

sifier as our basic classification model. In this sub-

section, we discuss the impacts of different classifiers

on the CPDP performance of BDA. For this purpose,

we choose five additional classifiers for observations, in-

cluding naive Bayes (NB), nearest neighbor (NN), clas-

sification and regression tree (CART), random forest

(RF), and one ensemble classifier Adaboost. These

classifiers are widely studied in the software defect pre-

diction domain[30,59]. Fig.11 shows the average per-

formance values in terms of the six indicators on each

dataset.

From Fig.11, we can observe that, over the AEEEM

dataset, BDA with the LR classifier is obviously supe-

F-
Mea

su
re

g-M
ea

n

Bala
nc

e
AUC

EAReca
ll

EAF
-M

ea
su

re
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Indicator

P
e
rf

o
rm

a
n
c
e

NB
NN
CART
RF
Adaboost
LR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
c
e

NB
NN
CART
RF
Adaboost
LR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
c
e

NB
NN
CART
RF
Adaboost
LR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e
rf

o
rm

a
n
c
e

NB
NN
CART
RF
Adaboost
LR

(a)

F-
Mea

su
re

g-M
ea

n

Bala
nc

e
AUC

EAReca
ll

EAF
-M

ea
su

re

Indicator

(b)

F-
Mea

su
re

g-M
ea

n

Bala
nc

e
AUC

EAReca
ll

EAF
-M

ea
su

re

Indicator

(c)

F-
Mea

su
re

g-M
ea

n

Bala
nc

e
AUC

EAReca
ll

EAF
-M

ea
su

re

Indicator

(d)

Fig.11. Six average indicator values of BDA with different classifiers on each benchmark dataset. (a) AEEEM. (b) NASA. (c) SOFTLAB
dataset. (d) RELINK.

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1059

rior to BDA with other five classifiers; over the NASA

dataset, BDA with the LR classifier is obviously better

than BDA with other five classifiers in terms of four

traditional indicators, but achieves the similar perfor-

mance to BDA with the NN classifier in terms of two

effort-aware indicators; over the SOFTLAB and RE-

LINK datasets, BDA with the LR classifier achieves

the best average performance compared with BDA with

other five classifiers in terms of F -measure, g-mean, and

Balance, but worse average performance in terms of two

effort-aware indicators.

Overall, BDA with LR classifier performs well in

most cases. Thus, LR is the most appropriate classifier

for our CPDP method BDA.

7 Threats to Validity

7.1 Threats to Internal Validity

This kind of threats mainly pays attention to the

impacts of uncontrolled factors on the experimental re-

sults, especially the unexpected faults in the implemen-

tation of the methods. To reduce such threats, for the

methods whose source code is online available (such as

the TCA method), we use the supplied source code to

avoid the possible inconsistency of reimplementation.

For the methods without source code, we try our best to

guarantee the accuracy of the implementation by care-

fully following the corresponding details in the original

papers.

7.2 Threats to External Validity

This kind of threats concerns the generalization of

our experimental results to other defect data. To min-

imize such threats, we choose four benchmark datasets

including 18 open source projects. These projects are

developed with Java or C languages, and the modules

are extracted at function, class or file level. All these

guarantee the diversity of our studied corpora. We con-

duct the experiments on total 66 cross project pairs,

which enables our experimental results to have a cer-

tain representation. However, we still could not guar-

antee that our results keep consistent on closed soft-

ware projects or on open source projects developed with

other programming languages.

7.3 Threats to Conclusion Validity

This kind of threats concentrates on the appropriate

usage of the statistical techniques. In this work, we use

the Friedman test and the Nemenyi test to check the

statistically significant differences between BDA and

the baseline methods. Unlike the ANOVA test[60] and

Scott-Knott test[30,61] which are based on an assump-

tion that the performance values should fulfill the nor-

mality of both the residuals assumption and the ho-

moscedasticity assumption[62], the statistical tests used

in this work are non-parametric, which means that they

do not require the analyzed data to follow a particular

distribution. Thus, using the Friedman test and Ne-

menyi test makes our statistical analysis more rigorous.

7.4 Threats to Construct Validity

This kind of threats focuses on whether the used

performance indicators can represent the real-world re-

quirement of the defect prediction. To alleviate such

threats, we use four traditional indicators and two

effort-aware indicators. The selected traditional indi-

cators are deemed as comprehensive indicators for de-

fect prediction. In addition, we use two recently pro-

posed effort-aware indicators which are verified to be

suitable for performance evaluation in defect predic-

tion scenario[10,54]. Using these indicators enables us

to conduct a comprehensive performance evaluation.

8 Conclusions

Due to the limitation of existing transfer learning

based CPDP methods that does not consider both

marginal and conditional distribution differences of

data between different projects, in this work, we in-

troduced a novel BDA method to narrow the gap

by combining the two kinds of distribution differences

with adaptive weights. We conducted experiments on

18 open-source projects from four benchmark datasets

with four traditional and two effort-aware indicators.

The experimental results showed that over the four

datasets, our method BDA improves by an average of

23.8%, 12.5%, 11.5%, 4.7%, 34.2%, and 33.7% com-

pared with 12 baseline methods (including six training

data filter methods and six transfer learning methods)

in terms of the six indicators, respectively.

Since defect data naturally have the class imbalance

property, in the future work, we will incorporate this is-

sue into BDA. We will also explore how to choose the

optimal parameter λ for different benchmark datasets.

References

[1] Mei H. Understanding “software-defined” from an OS per-

spective: Technical challenges and research issues. Sci.

1060 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

China-Inf. Sci., 2017, 60(12): Article No. 126101.

[2] Lyu M R. Handbook of Software Reliability Engineering.

McGraw-Hill, 1996.

[3] Xu Z, Xuan J, Liu J, Cui X. MICHAC: Defect prediction via

feature selection based on maximal information coefficient

with hierarchical agglomerative clustering. In Proc. the 23rd

Int. Conf. Software Analysis, Evolution, and Reengineer-

ing, March 2016, pp.370-381.

[4] Ni C, Liu W S, Chen X, Gu Q, Chen D, Huang G D. A clus-

ter based feature selection method for cross-project software

defect prediction. J. Comput. Sci. Technol., 2017, 32(6):

1090-1107.

[5] Ma Y, Luo G, Zeng X, Chen A. Transfer learning for cross-

company software defect prediction. Inf. Softw. Technol.,

2012, 54(3): 248-256.

[6] Nam J, Pan S J, Kim S. Transfer defect learning. In

Proc. the 35th Int. Conf. Software Engineering, May 2013,

pp.382-391.

[7] Wang J, Chen Y, Hao S, Feng W, Shen Z. Balanced distri-

bution adaptation for transfer learning. In Proc. the 17th

Int. Conf. Data Mining, November 2017, pp.1129-1134.

[8] Menzies T, Greenwald J, Frank A. Data mining static code

attributes to learn defect predictors. IEEE Trans. Softw.

Eng., 2007, 33(1): 2-13.

[9] Fawcett T. An introduction to ROC analysis. Pattern

Recognit. Lett., 2006, 27(8): 861-874.

[10] Huang Q, Xia X, Lo D. Supervised vs unsupervised mod-

els: A holistic look at effort-aware just-in-time defect pre-

diction. In Proc. the 2017 Int. Conf. Software Maintenance

and Evolution, September 2017, pp.159-170.

[11] Xu Z, Li S, Tang Y et al. Cross version defect prediction

with representative data via sparse subset selection. In Proc.

the 26th Int. Conf. Program Comprehension, May 2018,

pp.132-143.

[12] Briand L C, Melo W L, Wüst J. Assessing the applicability

of fault-proneness models across object-oriented software

projects. IEEE Trans. Softw. Eng., 2002, 28(7): 706-720.

[13] Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B.

Cross-project defect prediction: A large scale experiment on

data vs. domain vs. process. In Proc. the 7th Joint Meet-

ing of the European Software Engineering Conf. and the

ACM SIGSOFT Symp. Foundations of Software Engineer-

ing, August 2009, pp.91-100.

[14] Turhan B, Menzies T, Bener A B, di Stefano J. On the rel-

ative value of cross-company and within-company data for

defect prediction. Empir. Softw. Eng., 2009, 14(5): 540-578.

[15] Peters F, Menzies T, Marcus A. Better cross company de-

fect prediction. In Proc. the 10th Working Conf. Mining

Software Repositories, May 2013, pp.409-418.

[16] Kawata K, Amasaki S, Yokogawa T. Improving relevancy

filter methods for cross-project defect prediction. In Proc.

the 3rd Int. Conf. Applied Computing and Information

Technology, July 2015, pp.1-12.

[17] Yu X, Zhang J, Zhou P, Liu J. A data filtering method

based on agglomerative clustering. In Proc. the 29th Int.

Conf. Software Engineering and Knowledge Engineering,

July 2017, pp.392-397.

[18] He P, Li B, Zhang D, Ma Y. Simplification of training data

for cross-project defect prediction. arXiv:1405.0773, 2014.

https://arxiv.org/abs/1405.0773, June 2019.

[19] He P, Ma Y, Li B. TDSelector: A training data

selection method for cross-project defect prediction.

arXiv:1612.09065, 2016. https://arxiv.org/abs/1612.09065,

Jun. 2019.

[20] He P, He Y, Yu L, Li B. An improved method for

cross-project defect prediction by simplifying training data.

Math. Probl. Eng., 2018, 2018: Article No. 2650415.

[21] Chen L, Fang B, Shang Z, Tang Y. Negative samples re-

duction in cross-company software defects prediction. Inf.

Softw. Technol., 2015, 62: 67-77.

[22] Ryu D, Jang J I, Baik J. A transfer cost-sensitive boosting

approach for cross-project defect prediction. Softw. Qual.

J., 2017, 25(1): 235-272.

[23] Liu C, Yang D, Xia X, Yan M, Zhang X. A two-phase trans-

fer learning model for cross-project defect prediction. Inf.

Softw. Technol., 2019, 107: 125-136.

[24] Forbes C, Evans M, Hastings N, Peacock B. Statistical Dis-

tributions (4th edition). John Wiley and Sons, 2010.

[25] Long M, Wang J, Ding G, Sun J, Yu P S. Transfer feature

learning with joint distribution adaptation. In Proc. the

2013 IEEE Int. Conf. Computer Vision, December 2013,

pp.2200-2207.

[26] Pan S J, Tsang I W, Kwok J T, Yang Q. Domain adapta-

tion via transfer component analysis. IEEE Trans. Neural

Networks, 2011, 22(2): 199-210.

[27] D’Ambros M, Lanza M, Robbes R. Evaluating defect pre-

diction approaches: A benchmark and an extensive compa-

rison. Empir. Softw. Eng., 2012, 17(4/5): 531-577.

[28] Shepperd M, Song Q, Sun Z, Mair C. Data quality: Some

comments on the NASA software defect datasets. IEEE

Trans. Softw. Eng., 2013, 39(9): 1208-1215.

[29] Lessmann S, Baesens B, Mues C, Pietsch S. Benchmarking

classification models for software defect prediction: A pro-

posed framework and novel findings. IEEE Trans. Softw.

Eng., 2008, 34(4): 485-496.

[30] Ghotra B, McIntosh S, Hassan A E. Revisiting the impact

of classification techniques on the performance of defect pre-

diction models. In Proc. the 37th Int. Conf. Software En-

gineering, May 2015, pp.789-800.

[31] Xu Z, Liu J, Luo X, Yang Z, Zhang Y, Yuan P, Tang Y,

Zhang T. Software defect prediction based on kernel PCA

and weighted extreme learning machine. Inf. Softw. Tech-

nol., 2019, 106: 182-200.

[32] Xu Z, Liu J, Yang Z, An G, Jia X. The impact of feature

selection on defect prediction performance: An empirical

comparison. In Proc. the 27th Int. Symp. Software Relia-

bility Engineering, October 2016, pp.309-320.

[33] Xu Z, Yuan P, Zhang T, Tang Y, Li S, Xia Z. HDA: Cross-

project defect prediction via heterogeneous domain adapta-

tion with dictionary learning. IEEE Access, 2018, 6: 57597-

57613.

[34] Jing X Y, Wu F, Dong X, Qi F, Xu B. Heterogeneous cross-

company defect prediction by unified metric representation

and CCA-based transfer learning. In Proc. the 10th Joint

Meeting on Foundations of Software Engineering, August

31–September 4, 2015, pp.496-507.

[35] Wu R, Zhang H, Kim S, Cheung S C. ReLink: Recovering

links between bugs and changes. In Proc. the 19th ACM

SIGSOFT Symp. and the 13th European Conf. Foundations

of Software Engineering, September 2011, pp.15-25.

Zhou Xu et al.: Cross Project Defect Prediction via Balanced Distribution Adaptation 1061

[36] Han J, Pei J, Kamber M. Data mining: Concepts and Tech-

niques (3rd edition). Morgan Kaufmann, 2011.

[37] Xia X, David L O, Pan S J, Nagappan N, Wang X. HYDRA:

Massively compositional model for cross-project defect pre-

diction. IEEE Trans. Softw. Eng., 2016, 42(10): 977-998.

[38] Yang Y, Zhou Y, Lu H, Chen L, Chen Z, Xu B, Zhang

Z. Are slice-based cohesion metrics actually useful in effort-

aware post-release fault-proneness prediction? An empirical

study. IEEE Trans. Softw. Eng., 2015, 41(4): 331-357.

[39] Nam J, Kim S. CLAMI: Defect prediction on unlabeled

datasets (T). In Proc. the 30th Int. Conf. Automated Soft-

ware Engineering, November 2015, pp.452-463.

[40] Yang Y, Harman M, Krinke J et al. An empirical study on

dependence clusters for effort-aware fault-proneness predic-

tion. In Proc. the 31st IEEE/ACM Int. Conf. Automated

Software Engineering, September 2016, pp.296-307.

[41] Nam J, Fu W, Kim S et al. Heterogeneous defect prediction.

IEEE Trans. Softw. Eng., 2018, 44(9): 874-896.

[42] Li Z, Jing X Y, Zhu X, Zhang H. Heterogeneous defect

prediction through multiple kernel learning and ensemble

learning. In Proc. the 2017 Int. Conf. Software Mainte-

nance and Evolution, Sept. 2017, pp.91-102.

[43] Li Z, Jing X Y, Zhu X, Zhang H, Xu B, Ying S. On

the multiple sources and privacy preservation issues for

heterogeneous defect prediction. IEEE Trans. Softw. Eng.,

2019, 45(4): 391-411.

[44] Li Z, Jing X Y, Wu F, Zhu X, Xu B, Ying S. Cost-

sensitive transfer kernel canonical correlation analysis for

heterogeneous defect prediction. Autom. Softw. Eng., 2018,

25(2): 201-245.

[45] Fan R E, Chang K W, Hsieh C J, Wang X R, Lin C J. LIB-

LINEAR: A library for large linear classification. J. Mach.

Learn. Res., 2008, 9: 1871-1874.

[46] Sasaki Y. The truth of the F -measure. Teach Tutor Mater,

2007, 1(5): 1-5.

[47] Jiang Y, Cukic B, Ma Y. Techniques for evaluating fault

prediction models. Empir. Softw. Eng., 2008, 13(5): 561-

595.

[48] Liparas D, Angelis L, Feldt R. Applying the Mahalanobis-

Taguchi strategy for software defect diagnosis. Autom.

Softw. Eng., 2012, 19(2): 141-165.

[49] Jing X Y, Wu F, Dong X, Xu B. An improved SDA based

defect prediction framework for both within-project and

cross-project class-imbalance problems. IEEE Trans. Softw.

Eng., 2017, 43(4): 321-339.

[50] Wang S, Yao X. Using class imbalance learning for soft-

ware defect prediction. IEEE Trans. Reliab., 2013, 62(2):

434-443.

[51] Ryu D, Jang J I, Baik J. A hybrid instance selection us-

ing nearest-neighbor for cross-project defect prediction. J.

Comput. Sci. Technol., 2015, 30(5): 969-980.

[52] Li M, Zhang H, Wu R et al. Sample-based software defect

prediction with active and semi-supervised learning. Au-

tom. Softw. Eng., 2012, 19(2): 201-230.

[53] Ling C X, Huang J, Zhang H. AUC: A statistically con-

sistent and more discriminating measure than accuracy. In

Proc. the 18th Int. Joint Conf. Artificial Intelligence, Au-

gust 2003, pp.519-524.

[54] Huang Q, Xia X, Lo D. Revisiting supervised and unsuper-

vised models for effort-aware just-in-time defect prediction.

Empir. Softw. Eng., doi:10.1007/s10664-018-9661-2.

[55] Demšar J. Statistical comparisons of classifiers over multi-

ple data sets. J. Mach. Learn. Res., 2006, 7: 1-30.

[56] Mende T, Koschke R. Effort-aware defect prediction mod-

els. In Proc. the 14th European. Conf. Software Mainte-

nance and Reengineering, March 2010, pp.107-116.

[57] Herbold S, Trautsch A, Grabowski J. A comparative study

to benchmark cross-project defect prediction approaches.

IEEE Trans. Softw. Eng., 2018, 44(9): 811-833.

[58] Zhou Y, Yang Y, Lu H et al. How far we have progressed

in the journey? An examination of cross-project defect pre-

diction. ACM Trans. Software Eng. Method., 2018, 27(1):

Article No. 1.

[59] Tantithamthavorn C, McIntosh S, Hassan A E et al. The

impact of automated parameter optimization on defect pre-

diction models. IEEE Trans. Softw. Eng., 2019, 45(7): 683-

672.

[60] Shepperd M, Bowes D, Hall T. Researcher bias: The use of

machine learning in software defect prediction. IEEE Trans.

Softw. Eng., 2014, 40(6): 603-616.

[61] Tantithamthavorn C, McIntosh S, Hassan A E, Matsumoto

K. An empirical comparison of model validation techniques

for defect prediction models. IEEE Trans. Softw. Eng.,

2017, 43(1): 1-18.

[62] Herbold S. Comments on ScottKnottESD in response to

“an empirical comparison of model validation techniques

for defect prediction models”. IEEE Trans. Softw. Eng.,

2017, 43(11): 1091-1094.

Zhou Xu received his B.S. degree

in computer science and technology

from Huazhong Agricultural University,

Wuhan, in 2014. Now he is a joint Ph.D.

candidate in the School of Computer

Science at Wuhan University, Wuhan,

and in the Department of Computing at

The Hong Kong Polytechnic University,

Hong Kong. He is also a temporary research assistant at

the College of Computer Science and Technology, Harbin

Engineering University, Harbin. His research interests

include software defect prediction, feature engineering,

and data mining.

Shuai Pang received his B.S. degree

in information and computing science

from Huazhong Agricultural University,

Wuhan, in 2018. Now he is a Master

student in the School of Computer

Science at Wuhan University, Wuhan.

His research interest focuses on software

engineering and machine learning.

1062 J. Comput. Sci. & Technol., Sept. 2019, Vol.34, No.5

Tao Zhang spent one year as a

postdoctoral research fellow in the

Department of Computing at The Hong

Kong Polytechnic University, Hong

Kong. He got his Ph.D. degree in

computer science from the University

of Seoul, Seoul, in 2013. Now, he is

an associate professor in the College of

Computer Science and Technology at Harbin Engineering

University, Harbin. His research interest includes mining

software repositories and empirical software engineering.

Xia-Pu Luo received his Ph.D.

degree in computer science from The

Hong Kong Polytechnic University,

Hong Kong, in 2007, and was a Post-

Doctoral Research Fellow with the

Georgia Institute of Technology, At-

lanta. Now, he is an associate professor

with the Department of Computing

and an associate researcher with the Shenzhen Research

Institute, The Hong Kong Polytechnic University, Hong

Kong. His current research focuses on smartphone security

and privacy, network security and privacy, and Internet

measurement.

Jin Liu received his Ph.D. degree in

computer science from the State Key

Laboratory of Software Engineering,

Wuhan University, Wuhan, in 2005. He

is currently a professor in the School of

Computer Science, Wuhan University,

Wuhan. His research interests include

software engineering, machine learning,

and interactive collaboration on the Web.

Yu-Tian Tang received his Ph.D.

degree in computer science from The

Hong Kong Polytechnic University,

Hong Kong, in 2018. Currently, he

is a post-doctoral research fellow in

The Hong Kong Polytechnic University,

Hong Kong. His research interests

include software product line, system

security and machine learning.

Xiao Yu received his B.S. degree

in computer science and technology

from Hubei University, Wuhan, in 2015.

Now he is a joint Ph.D. candidate in

the School of Computer Science at

Wuhan University, Wuhan, and in the

Department of Computer Science, City

University of Hong Kong, Hong Kong.

His research interests include software engineering and

machine learning.

Lei Xue received his Ph.D. degree in

computer science from The Hong Kong

Polytechnic University, Hong Kong,

in 2017. Now, he is a post-doctoral

research fellow with the Department of

Computing, The Hong Kong Polytech-

nic University, Hong Kong. His current

research focuses on network security,

mobile security, and network measurement.

