
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017 865

Toward Automatically Generating Privacy Policy
for Android Apps

Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang

Abstract— A privacy policy is a statement informing users
how their information will be collected, used, and disclosed.
Failing to provide a correct privacy policy may result in a
fine. However, writing privacy policy is tedious and error-prone,
because the author may not understand the source code well
as it could have been written by others (e.g., outsourcing), or
the author does not know the internal working of third-party
libraries used. In this paper, we propose and develop a novel
system named AutoPPG to automatically construct correct and
readable descriptions to facilitate the generation of privacy policy
for Android applications (i.e., apps). Given an app, AutoPPG first
conducts static code analysis to characterize its behaviors related
to users’ personal information, and then applies natural language
processing techniques to generating correct and accessible sen-
tences for describing these behaviors. The experimental results
using real apps and crowdsourcing indicate that: 1) AutoPPG
creates correct and easy-to-understand descriptions for privacy
policies; 2) the privacy policies constructed by AutoPPG usually
reveal more operations related to users’ personal information
than existing privacy policies; and 3) most developers, who reply
us, would like to use AutoPPG to facilitate them.

Index Terms— Mobile applications, natural language process-
ing, privacy policy, static code analysis.

I. INTRODUCTION

AS SMARTPHONES have become an indispensable part
of our daily lives, users are increasingly concerned

about the privacy issues of the personal information collected
by apps. Although the Android system lists all permissions
required by an app before its installation, such approach may
not help users understand the app’s behaviors, especially those
related to users’ personal information, due to the lack of pre-
cise and accessible descriptions [1], [2]. Alternatively, devel-
opers can provide privacy policies to their apps for informing

Manuscript received March 16, 2016; revised September 6, 2016 and
November 19, 2016; accepted November 21, 2016. Date of publication
December 13, 2016; date of current version January 25, 2017. This work
was supported in part by Hong Kong GRF under Grant PolyU 5389/13E,
in part by the National Natural Science Foundation of China under Grant
61202396 and Grant 61602258, in part by the HKPolyU Research under
Grant G-UA3X and Grant G-YBJX, in part by the Shenzhen City Science and
Technology R&D Fund under Grant JCYJ20150630115257892, and in part by
the China Postdoctoral Science Foundation under Grant 2015M582663. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Mauro Barni. (Corresponding author: Xiapu Luo.)

L. Yu, T. Zhang, X. Luo, and L. Xue are with the Department
of Computing, The Hong Kong Polytechnic University, Hong Kong
(e-mail: cslyu@comp.polyu.edu.hk; cstzhang@comp.polyu.edu.hk;
csxluo@comp.polyu.edu.hk; cslxue@comp.polyu.edu.hk).

H. Chang is with the Law and Technology Centre, The University of
Hong Kong, Hong Kong (e-mail: hcychang@hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2639339

users how their information will be collected, used, and
disclosed [3]. Actually, the Federal Trade Commission (FTC)
suggested mobile developers to prepare privacy policies for
their apps and make them easily accessible through the app
stores [4]. Other major countries or areas (e.g., EU,etc.)
have privacy laws for requiring developers to add privacy
policies [5].

Failing to provide a correct privacy policy may result in
a fine. For instance, the social networking app “Path” was
fined $800,000 by FTC in 2013 because it collected and stored
users’ personal information without declaring the behaviors
in its privacy policy [6]. As another example, FTC filled a
complaint against a popular app named “Brightest Flashlight
Free” in 2014 because its privacy policy does not correctly
reflect how it uses personal data [7].

However, writing privacy policy is tedious and error-prone
because of many reasons. For example, the author of a privacy
policy may not well understand the app’s source code, which
could be outsourced, or the precise operation of each API
invoked. Moreover, the developer may not know the internals
of the integrated third-party libraries, which usually do not
provide source code. Existing approaches for automatically
generating privacy policies cannot solve these issues because
they rely on human intervention, such as answering questions
like “what personal information do you collect?”, and few of
them analyze code. It is worth noting that the tool Privacy
Informer [8] could only generate privacy policies for apps
created by App Inventor [9] instead of normal apps.

To facilitate the generation of privacy policy, in this paper,
we propose a novel system named AutoPPG to automatically
construct correct and readable descriptions for an app’s behav-
iors related to personal information. It is non-trivial to develop
AutoPPG because of several challenging issues. First, how to
automatically map APIs to personal information? Note that
other similar studies (e.g., AppProfiler [2]) did it manually.
By exploiting the Google Java style followed by the Android
framework [10] and information extraction techniques [11], we
propose a new algorithm (i.e., Algorithm 1 in Section III-A)
to address this issue.

Second, how to profile an app’s behaviors related to personal
information through static analysis? By leveraging the app
property graph (APG) [12], we design various graph traversals
to answer questions like (Section III-B): does the app collect
personal information? If yes, does the host app or any third-
party library collect such information? Does the app notify
users before collecting the information? Will the app store the
information locally or send it to a remote server?

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

866 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Lastly, how to construct correct and readable descriptions?
To address this issue, we propose several new approaches
based on NLP techniques [13], including, selecting proper
verbs, defining clear and simple sentence structure following
the guidelines of plain English [14], removing sentences
with the same meanings, and rearranging sentences according
to the level of importance (Section III-C and Section III-E).
We validate the generated descriptions through crowdsourcing-
based experiments (Section IV-C).

In summary, this paper makes the following contributions:

1) We propose AutoPPG, a novel system that automatically
constructs correct and readable descriptions to facilitate
the generation of privacy policy for Android apps. To
our best knowledge, AutoPPG is the first system that
can construct such information by leveraging static code
analysis and NLP techniques.

2) We tackle several challenging issues in developing
AutoPPG, including automatically mapping APIs to per-
sonal information, profiling an app’s behaviors related
to personal information, and constructing correct and
readable descriptions. These techniques can also be
applied to solve other research problems, such as mal-
ware detection.

3) We implement AutoPPG and perform careful experi-
ments with real apps and crowdsourcing to evaluate
its performance. The experimental results show that
AutoPPG can construct correct and easy-to-understand
descriptions for privacy policy. Actually, the privacy
policies resulted from AutoPPG usually reveal more
apps’ behaviors related to users’ personal information
than existing privacy policies. Moreover, most devel-
opers, who reply us, would like to use AutoPPG to
facilitate them.

The rest of this paper is structured as follows. Section II
presents the background. Section III details AutoPPG and
Section IV describes the experimental results, respectively.
Section V discusses the limitation of AutoPPG and future
improvement. After introducing the related work in Section
VI, we conclude the paper in Section VII.

II. BACKGROUND

A. Privacy Policy

According to [5], a privacy policy may contain five kinds of
information: (1) contact and identity information; (2) personal
information to be collected and used; (3) the reasons why the
data is needed; (4) third parties to whom the information will
be disclosed; (5) users’ rights. Since (1), (3) and (5) cannot be
identified by analyzing an app, AutoPPG focuses on generating
statements for (2) and (4).

As an example, Fig. 1 shows a part of the app
com.macropinch.swan’s privacy policy. It contains the identity
information shown in the top part, and the contact information
shown in the bottom part, both of which are in dashed line
rectangles. Such information belongs to (1) and AutoPPG
cannot generate. The sentences in the red box present which
information will be collected and the statements in the blue
box describe how the information will be disclosed. Such

Fig. 1. Sample of privacy policy (com.macropinch.swan).

Fig. 2. The structure of a general sentence in privacy policy.

information belongs to (2) and (4), respectively, and AutoPPG
can create them.

B. The Sentence Structure

A general sentence in privacy policy contains three key
parts, including executor, action, and resource. Other parts
such as condition (e.g., when this action happens), purpose
(e.g., why the information is needed), and target (e.g., whom
the information will be sent to) are optional.

• Executor is the entity who collects, uses and retains
information. If the subject is “we”, like the sentence
shown in Fig. 2, the behaviour is executed by the app; if
the subject is a third-party library, this information will
be disclosed to the third-party library.

• Action refers to what the executor does, such as “collect”
in Fig. 2.

• Resource is the object on which an action operates. In
Fig. 2, the resource is “your location information”.

Here, personal information refers to the private data that can
be obtained by an app from smartphones, such as “location”,
“contact”, “device ID”, “audio”, “video”, etc. They serve as
the object of an action verb, because AutoPPG currently
just generates sentences in active voice. We use personal
information and resources interchangeably in this paper.

III. AUTOPPG

As shown in Fig. 3, AutoPPG consists of three modules:
(1) Document analysis module (Section III-A): Given an API

and its description from the corresponding API document, this
module identifies the personal information used by the API
automatically by leveraging the Google Java Style [10] and
employing information extraction techniques [11]. The output

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 867

Fig. 3. Overview of AutoPPG, which has three major modules in different dashed-line boxes.

of this module is used by the static code analysis module to
determine the personal information collected by an app.

(2) Static code analysis module (Section III-B): Given
an app without source code and the mapping of selected
APIs to the personal information from the document analysis
module, this module disassembles the app’s APK file, turns its
statements into intermediate representation (IR), and inspects
the IRs to profile the app by performing the following four
steps: (1) finding the personal information collected by apps;
(2) locating the collector of the personal information identified
in (1); (3) determining whether or not the app asks for
users’ consent explicitly before invoking the selected APIs;
(4) identifying the app’s information retention strategy.

(3) Privacy policy generation module (Section III-C, III-D,
and III-E): Taking in an app’s profile identified through static
code analysis, this module aims at generating readable privacy
policy. More precisely, we define a sentence template follow-
ing the guidelines of plain English [14] (Section III-D), and
then select suitable verbs according to the personal information
for generating sentences (Section III-C). Moreover, we change
the order of sentences and remove the duplicate sentences to
improve the readability (Section III-E).

A. Document Analysis

This section details the document analysis module for iden-
tifying the personal information used by an API. Our algorithm
(i.e., Algorithm 1) takes the official API description, method
name, and class name as input, and returns the personal
information used by the API.

We process the API descriptions because they provide
more information about an API’s behaviours, such as the
information accessed by the API. To extract the noun phrases
referring to the collected personal information, we need to
locate the main verb and the object of this verb from the
description. For example, function getDeviceId()’s description
is: “Returns the unique device ID, for example, the IMEI for
GSM and the MEID or ESN for CDMA phones”, where the
main verb is “Returns”, and its object is “device ID”.

Using APIs’ descriptions as input may not be enough due to
the difficulty of handling all descriptions. For instance, given
a sentence with postpositive attributive (e.g., “a list of …that
…”), the tool (i.e., Stanford parser [15]) used for analyzing
the sentence will extract the object (i.e., “list”), which cannot
help users understand the details of personal information.

Therefore, we leverage two additional kinds of information,
including method names and class names, as the reference to
determine the postpositive attributes that need to be extracted.

Android framework’s method names usually follow the
Google Java style [10] and are written in lowerCamelCase,
meaning that the first letters of all words are written in
uppercase except the first word. Moreover, these method
names typically contain verbs and their objects, such as get-
DeviceId(). In this case, the information contained in method
name can be used as a reference. However, if the method
name is a verb (e.g., the open(int cameraId) method in the
android.hardware.Camera class), we cannot extract private
information from its method name. Since the class name may
be a noun or noun phrase (e.g., Camera in this example) [10],
we locate the personal information from the class name as
a reference. Note that Android framework’s class names are
typically written in UpperCamelCase, meaning that all words
start with uppercase letters.

In the remaining of this section, we first introduce the
sensitive APIs selected as the input of the document analysis
module. Then, we detail the document analysis module’s
steps, including: 1) Pre-processing step, where we do syn-
tactic analysis on the API description, and extract personal
information from the method name and class name. 2) Per-
sonal information extraction step, where we leverage the API
description’s syntactic information, the information extracted
from method name and class name if any to determine the
personal information to be accessed by the API.

1) Sensitive APIs Selection: We are interested in APIs that
can get the personal information. Since Susi [16] provides a
list of such functions, we select 79 APIs that can obtain the
following information: device ID, IP address, location (include
latitude, longitude), country name, postal code, account, phone
number, sim serial number, audio/video, installed application
list, visited URLs, browser bookmarks, and cookies. We
combine these APIs’ signatures with their official descriptions,
and conduct the pre-processing on them. The signature of an
API contains class name, type of return value, method name,
and types of parameters of the API.

It is worth noting that apps can also obtain the
personal information through content providers (e.g.,
“content://contacts”). PScout [17] identifies 78 URI
strings for Android 4.1.1. We select 8 URI strings that
request the personal information, including contacts (3

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

868 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

URI strings), calendar, browser history, SMS (2 URI
strings), and call log. Other URI strings are ignored
since their information is not considered by AutoPPG
(e.g.,“content://com.example.documents” is related to
MANAGE_DOCUMENTS permission). PScout [17] lists 31
permissions and their URI fields. We select 6 permissions from
them, and these permissions contain 160 URI fields. Other
permissions and their related URI fields are ignored because
they are not relevant to sensitive personal information (e.g., the
URI fields <android.provider.UserDictionary:
android.net.Uri CONTENT_URI> under the
READ_USER_DICTIONARY permission).

2) Pre-Processing: We first extract personal information if
any from an API’s method name and class name. Then, we
conduct syntactic analysis on the API’s description. Finally,
our algorithm (i.e., Algorithm 1) automatically determines the
personal information accessed by the API.

a) Extracting Personal Information From a Method
Name: We first remove the verb prefix in the method name
because the names of most information retrieval functions
are verb phrases. They usually start with a verb prefix, such
as “get” or “read”, and the verb prefix is followed by the
corresponding personal information. Moreover, the verb prefix
starts with a lowercase letter and all following words start with
the uppercase letters. We construct a verb prefix list, which
contains 178 verbs, by extracting all prefixes that appear more
than once in Susi’s function list [16].

Based on the verb prefix list, we remove the method name’s
verb prefix and split the remaining noun phrase into distinct
words by exploiting the fact that they start with uppercase
letters. Moreover, we remove the stop words according to the
stop word list provided by NLTK [18], because stop words are
meaningless and removing them can make the extracted noun
phrase more clear. Using the method getAllVisitedUrls() as an
example to illustrate the above steps, we first remove the verb
prefix “get”, and then divide the remaining string into three
words including “All”, “Visited”, and “Urls”. Finally, “All” is
removed, and only “Visited Urls” is kept.

b) Extracting Personal Information From Class
Name: The fully qualified name of a class consists of
the package name and the class name. For example,
android.hardware.Camera combines package name
android.hardware and the class name Camera. Currently, we
just extract the class name and turn it into a list of distinct
words.

c) Syntactic Analysis on API Descriptions: Given a
selected API’s description, to identify the main verb and its
corresponding object, we use Stanford parser [15], a very
popular syntactic analysis tool [19], [20], to construct the
sentence’s syntactic structure. Stanford parser outputs the
sentence’s phrase structure tree and typed dependency infor-
mation.

An example is shown in Fig. 4. The phrase structure
tree has the hierarchy structure, where each line represents
a distinct phrase of the input sentence. The part-of-speech
(PoS) tags are also contained in the phrase structure tree.
A PoS tag is assigned to the category of words which have
the similar grammatical properties. These words usually play

Fig. 4. The phrase structure tree and the typed dependencies of the
API getRunningAppProcesses()’s description: “Returns a list of application
processes that are running on the device”.

similar roles within the grammatical structure of sentences.
Common English PoS tags include NN (noun), VB (verb), PP
(preposition), NP (noun phrase), VP (verb phrase), etc. Typed
dependency shows the grammatical relationships between the
words in a sentence. Virtual node “Root” has a root relation
that points to the root word of the sentence. Other common
relations between words include dobj (direct object), nsubj
(nominal subject), prep_on (preposition on), etc.

3) Personal Information Extraction: Given the syntactic
information of an API’s description, the personal information
extracted from the method name and the class name, Algo-
rithm 1 determines the personal information obtained by the
API. We use the API getRunningAppProcesses() as an example
(Fig. 4) to explain it.

The pre-processing step provides the description sentence’s
(i.e., desc) phrase structure tree desctree and typed depen-
dency information (i.e., descdept) (line 1-2 in Algorithm 1).

Using the typed dependency information, we can identify
the root word root from the typed dependency (line 3 in Algo-
rithm 1). For example, in Fig. 4, verb “Return” is extracted.
The root word usually is the main verb of a sentence. We use
the root word to help use locate the personal information by
extracting the direct object of the root word using function
ExtractObj (line 4 in Algorithm 1). In Fig. 4, the direct object
of verb “Return” is the noun “list”. It is worth noting that
the direct object of the root word is only one word. If the
object word is modified by other adjective words or nouns, we
will also extract them and put them before the direct object
in order to get a complete phrase. For instance, for the noun
phrase “device ID”, if “ID” is the direct object, we will extract
“device” and put it before “ID”.

Then, we use the personal information obtained from the
method name and the class name as a reference to check if the
direct object (i.e., obj) contains enough information. If there
exists personal information in the method name, we extract it
as the reference information (line 6-7). If the method name is
a verb (i.e., it does not contain any personal information), we
use the personal information extracted from the class name
as the reference information (line 8-9). If neither the method
name nor the class name contains personal information, the

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 869

Algorithm 1 Identifying the Personal Information
Accessed by an API
Input: desc: API description, namemethod: name entity

in method name, nameclass : last part of class
name

Output: personal information used in this API
1 desctree = StanfordParserTree(desc);
2 descdept = StanfordParserDept(desc);
3 root = ExtractRoot(descdept);
4 obj = ExtractObj(descdept, root);
5 nameInfo = null;
6 if Exist(namemethod) then
7 nameInfo = namemethod ;
8 else
9 nameInfo = nameclass ;

10 end
11 if nameInfo ! = null then
12 simV alue = Similarity(obj , nameIn f o);
13 if simV alue > threshold then
14 return obj ;
15 else
16 ConatinName=obj .contain(nameInf o);
17 if ContainName == true then
18 return obj ;
19 else
20 in f o=FindInfo(desctree, descdept);
21 obj = obj + in f o;
22 return obj ;
23 end
24 end
25 else
26 return obj ;
27 end

algorithm just returns the direct object (i.e., obj) as the final
personal information (line 26).

After getting the reference information (i.e., nameIn f o)
from the method name and the class name, we first determine
if additional postpositive attributives need to be added after
the direct object. This is done by calculating the semantic
similarity between direct object obj and reference informa-
tion nameIn f o (line 12). If the semantic similarity value
(simV alue) calculated by ESA [21] is larger than the thresh-
old (line 12-14), we think that the reference information can be
found in the direct object, and then we return the direct object
as the personal information accessed by this API. If the simi-
larity value is lower than the threshold but the distinct words of
the reference information appear in the direct object, we still
think that the direct object contains the reference information
(line 16-18). Otherwise, we regard that the direct object is not
enough and some postpositive attributives should be added to
make it more complete. In Fig. 4, the similarity value between
the direct object “list” and the reference information “Running
App Processes” is lower than threshold. At the same time,
“Running App Processes” does not appear in the direct object.
Therefore, we add postpositive attributives after “list”.

Function Find In f o locates the postpositive attributives of
the direct object (line 20). More precisely, we check the
phrase structure tree. If the subtree of the direct object con-
tains phrases like “of …”/“from …”/“that …”/“for …”, these
postpositive attributes are extracted. We add the postpositive
attributes (i.e., in f o) after the direct object to get the personal
information (line 21-22). In Fig. 4, the postpositive attributive
“of application processes” is added after “list”. Finally, “list of
application processes” is returned as the personal information
accessed by the API getRunningProcesses().

We use Explicit Semantic Analysis(ESA) [21] to compute
the semantic relatedness between texts (line 12). Given two
documents, ESA uses machine learning technique to map
natural language text into a weighted sequence of Wikipedia
concepts. Then, ESA computes the semantic relatedness of
texts by comparing their vectors in the space defined by the
concepts. We do not use WordNet [22] because WordNet can
only calculate the similarity between distinct words. Instead,
ESA can compute the relatedness between arbitrarily long
texts. In Fig. 4, since the semantic relatedness between obj
“list” and “Running App Processes” calculated by ESA is
lower than the threshold (0.5 in our system), obj cannot be
regarded as the personal information, and thus more informa-
tion should be added.

After mapping APIs to the personal information, we man-
ually group APIs that request the same kinds of personal
information together. For example, getAccountsByType and
getAccountsByTypeAndFeatures are in the same group because
they all return the list of all accounts. These API groups are
used to remove the duplicate sentences (Section III-E).

B. Static Analysis

Given an app, static analysis module first identifies invoked
sensitive APIs and then determines the following information
for each API:

• The personal information accessed by this app.
• Third-party libraries used in this app and the private

information accessed by them.
• The condition(s) under which the personal information is

accessed.
• Whether the personal information is retained or not.
• Whether the personal information is transferred or not.

Our static analysis is based on Vulhunter [12], which can
construct an App Property Graph (APG) for each app and
store it in the Neo4j graph database [23] for further processing.
APG is a combination of AST (Abstract Syntax Tree), MCG
(Method Call Graph), ICFG (Inter-procedural Control Flow
Graph), and SDG (System Dependency Graph).

1) Static Analysis Module Overview: Algorithm 2 describes
the basic procedure of our static analysis module. After enu-
merating invoked APIs, we first identify sensitive APIs/URIs,
and then do reachability analysis on these sensitive APIs
to remove infeasible code. After that, we map the selected
APIs/URIs to personal information, and determine whether
the private information is accessed by the host or third-party
libraries. For reachable sensitive API calls, we extract the con-
ditions of invoking them. Moreover, we conduct information

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

870 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Algorithm 2 The Procedure of the Static Analysis Module
Input: stmt: statement in code

1 api = ExtractCalledAPI(stmt);
2 sensi tive = SensitiveAnalysis(api);
3 reachable = ReachabilityAnalysis(api);
4 if sensi tive == true ∧ reachable == true then
5 In f o = MapApiToInformation(api);
6 User = UserIdentification(api);
7 Condi tions = ConditionExtraction(api);
8 RetatinOr Not = RetentionAnalysis(api);
9 T rans f erred Or Not = TransferAnalysis(api)

10 return (In f o, User , Condi tion, RetainOr Not ,
T rans f erred Or Not);

11 end
12 return null;

retention analysis to find the personal information stored in
file/log or sent out through network/SMS. We also perform
information transfer analysis to determine if the information
will be sent between the host app and third-party libraries or
not. We detail these steps in the following paragraphs.

2) Sensitive API/URI Identification: The app can access
sensitive information through the APIs/URIs described in
Section III-A.1. In order to identify the used APIs/URIs,
the static analysis module considers two kinds of statements:
(1) statements that call sensitive APIs; (2) statements that
access content providers (e.g., ContentResolver.query()). For
the statements in the second case, we perform backward data
flow analysis to find the sensitive URIs used as the parameters.

3) Reachability Analysis: If a statement calls sensitive APIs
or uses sensitive URIs, we conduct reachability analysis to
determine whether it is included in infeasible code [24], [25].
Since the infeasible code will not be executed, if the generated
privacy policy describes such behaviors, it will raise false
alerts. Section IV-B reports the experimental results of using
reachability analysis to avoid false sentences.

To check if the sensitive API/URI is used in feasible code,
we perform depth first traversal on the method call graph. If
there is an execution path from entry points to the methods
invoking sensitive APIs/URIs, the corresponding statement
is reachable. Since Android apps have multiple entry points
[26], such as life-cycle methods of each component and the
callbacks of UI evnets, AutoPPG takes them into account.

4) Mapping APIs/URIs to Personal Information: The doc-
ument analysis module creates a mapping between each API
and the personal information. We use it to map the called
sensitive API to corresponding personal information.

We map the selected URIs (i.e., the 8 URI strings and
160 URI fields) to the corresponding personal information
manually through the required permissions. For example,
since the URI “content://com.android.calendar” requires per-
mission READ_CALENDAR, we map it to calendar. We do not
use information extraction technique to automatically process
these URIs’ descriptions because most of them do not contain
useful information. More precisely, after checking 160 URI
fields, we find that 61 URI fields do not have descriptions

in the official document. Although 46 of them have descrip-
tions, they are useless. For example, the description of the
field <android.provider.TelephonyMmsInbox:
android.net.Uri CONTENT_URI> is “The content://
style URL for this table.”. Only 53 URI fields have detailed
descriptions, which could be processed automatically.

5) APIs/URIs User Identification: In order to find the
embedded third-party libraries and determine whether they
collect personal information, we record the classes having
the statements that call sensitive APIs or use selected content
providers. If a class name is the same as a third-party library’s
class name, we deem that the third-party library is the user of
the personal information.

6) Condition Analysis: The execution conditions provide
context information of invoking sensitive APIs. For each
sensitive API/URI, AutoPPG identifies six kinds of conditions.

Five conditions are motived by AppContext [27] and
DESCRIBEME [28], including: system events, device status,
natural environment requirements, UI events, and hardware
events. AppContext extracts four kinds of context factors while
DESCRIBEME considers three kinds of conditions. Besides
including these five conditions in AutoPPG, we also identify
another kind of condition: device specific information, which
includes the used language, screen size, OS version, etc.

� System events. Broadcast receivers can register for
intents to be aware of the state changes of the sys-
tem. For example, after booting, the system will broadcast
the intent with android.intent.action.BOOT_COMPLETED
action. If the device is on low battery, intent with
android.intent.action.BATTERY_LOW action will be broad-
casted. AutoPPG contains a list of 54 different kinds of intents.
If sensitive APIs are called after the app receives certain
intents, AutoPPG records the action of these intents.

� Device status. Android provides APIs to check the
status of current device. For example, developers can call
PowerManager.isScreenOn() to determine whether the device
is in the interactive state or not. To collect all APIs related
to device status, we first parse the official API document to
get APIs fulfilling two requirements: the prefix of the method
name is “is” and the type of return value is boolean. 640 APIs
are found in this step. Since not all such APIs are relevant
to system status, such as URLUtil.isValidUrl(java.lang.String),
we manually check them and keep 98 APIs.

AutoPPG checks all branch statements on the path from
entry points to sensitive APIs and then conducts program slice
based on data dependency relation. All APIs related to device
status in these statements will be recorded.

� Natural environment requirements. Apps can check the
current time or geolocation to perform different actions. Sim-
ilar to APIs related to device status, AutoPPG also checks
APIs relevant to time (e.g., Date.getHour()) and geolocation
(e.g., Location.getLatitude()), and records them if they appear
on the execution paths from entry points to sensitive APIs.

� Device specific information. Developers can check
the language, screen size, and OS version. For example,
Locale.getDisplayLanguage() returns the language suitable
for display to the user. Display.getSize() obtains the dis-
play size in pixels. Display.getHeight() and Display.getWidth()

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 871

TABLE I

CALLBACK FUNCTIONS AND LISTENER REGISTER
FUNCTIONS FOR VIEW CLASS

return the height and width of the display, respectively.
android.os.Build.VERSION holds various information about
the OS and SDK_INT indicates the SDK version.

� UI events. It is a good practice for Apps to notify
users when personal information will be collected, such as
popping up a dialog. To identify such behaviors and write
them into the privacy policy, AutoPPG extracts all UI call-
backs that lead to the invocation of sensitive APIs. Apps can
intercept event from touchscreen interface or keyboard-style
input [29], [30]. For the former, developers can either stati-
cally define callback methods in the layout file (e.g., through
android:onClick=“” attribute) or dynamically register
event listener in code (e.g., through setOnClickListener()
in Tab. I). For the latter, developers can set the OnKeyLis-
tener for the View class and overwrite the callback method
onKey() [31] or directly overwrite some methods of View class.

We parse the layout file to locate the callbacks defined in it.
To find out the callbacks in the event listeners, we first locate
all statements that register a listener, and then conduct data
flow analysis to associate the view ID used in findViewByID()
with the callback method in the corresponding listener. After
finding the paths from the entry points to sensitive APIs, we
record all UI callbacks on the paths. The texts appearing on the
buttons are also extracted because they can help the privacy
policy generator describe which button is pressed by the user.

� Hardware events. Users can press the BACK and HOME
keys to affect the execution. For example, when the user
presses the HOME key, the onPause() of current activity is
called. When the user presses the BACK key, the onResume()
of last activity will be executed. If the entry points of sensitive
APIs are onPause() or onResume(), we will also record them.

7) Information Retention Analysis: Some personal infor-
mation will be not only used but also sent out through
internet/SMS or saved to file/log. These specified APIs through
which data could send out are called sink functions [16]. Such
behaviour should be identified and declared in privacy policies
to notify users. To capture such behaviour, we perform the
depth first traversal from those sensitive APIs/URIs to the
selected sink functions based on the data dependency relation.

For example, in app com.abukai.expenses (shown in
Fig. 5), the class com.abukai.expenses.Uti calls getLongi-
tude() and getLatitude(), and writes the results to the file
through FileOutputStream’s write() function. However, its
privacy policy does not mention recording user’s location
information.

8) Information Transfer Analysis: The personal information
obtained by the host app may be transferred to third-party

Fig. 5. com.abukai.expenses obtains the location and saves it into a file.

libraries [32]. For example, the Ad library Admob provides
AdRequest.Builder().setLocation() to pass location data to
it [33]. As another example, tool libraries may get personal
information (e.g., location) to facilitate identifying problems.
We conduct static taint analysis to determine if the sensitive
information will be transferred from the host app to a third-
party library or vice versa by checking the data flow from
sensitive APIs/URIs to the user of such data.

C. Verb Selection

The verb is an important component of a sentence. After
finding an app’s behaviors of collecting personal information,
we select proper verbs for generating the sentences. First,
when the app obtains the information through APIs, we use
“access”, “use”, or “check” as the main verb for most such
APIs. But if an app accesses external storage, we conduct
data flow analysis to determine its real operation (i.e., read or
write) and then automatically select the verbs. More precisely,
apps can invoke APIs, like Context.getExternalFilesDir()
and Context.getExternalFilesDirs(), to get file objects. If the
app uses the file object to create a new directory (e.g.,
File.mkdir()) and then writes data to file (e.g., FileOutput-
Stream.write()) or delete file (e.g., File.delete()), we use “mod-
ify” as the main verb. Otherwise, we use “read” as the main
verb.

Second, when the app obtains information by query-
ing content providers, we determine the main verb accord-
ing to the actual operations. More precisely, if the app
queries the content provider by using ContentResolver.query()
or ContentResolver.update(), we adopt “read” as the main
verb. If the information is inserted into a content provider
(e.g., by ContentResolver.insert()), we employ “modify” as
the main verb. If the information in content provider is
deleted by ContentResolver.delete(), we use “delete” as the
main verb.

D. Privacy Policy Generator

1) Sentence Generation: We generate sentences following
the guidelines of plain English [14], which allows readers
to understand the messages easily. Plain English has an
average sentence length of 15-20 words and prefers active
verbs. Hence, we define the structure of each generated
sentence as:

[precondi tion]subject verb object

[pur pose][postcondi tion]

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

This structure contains the following six parts:
Subject is the collector of personal information. If it is a

third-party lib, we use the lib’s name as the subject; otherwise,
we use “We” as the subject of sentence.

Verb is determined according to the APIs used in apps
(Section III-C).

Object is the collected personal information.
Precondition is an optional element. If the sensitive infor-

mation is obtained after checking four kinds of conditions
described in Section III-B.6 (i.e., system events, device sta-
tus, natural environment requirements, and device specific
information), we add a precondition (i.e., “If …”) before the
sentence. We employ the official descriptions of system events
to construct the pre-condition. For instance, the description
of the system event android.action.TIMEZONE_CHANGED
is “The timezone has changed”. If the sensitive APIs/URIs
are used when receiving this event, we will use “If the
timezone has changed” as the precondition. Since the offi-
cial descriptions of the status APIs usually start with
“Returns true if …” or “Returns true iff …”, we extract the
sub-sentences after these prefixes and use them as the pre-
conditions. For example, the description of the status API
PowerManager.isPowerSaveMode() is “Returns true if the
device is currently in power save mode.”. If the app calls
PowerManager.isPowerSaveMode() in its branch statements,
we use “If the device is currently in low power mode” as the
precondition.

Purpose is another optional element that describes why
the app accesses the personal information, because users are
very concerned about how the personal information will be
used [34]. Currently, AutoPPG can infer the purposes of three
kinds of personal information, including camera, location, and
contact. More precisely, if the camera is utilized to take picture
(e.g., calling Camera.takePicture() in Fig.6), we let the pur-
pose be “to take picture”. If the camera is employed to record
video (e.g., invoking MediaRecorder.setVideoSource()), the
purpose becomes “to record video”. For the location informa-
tion, if it is transferred to advertisement libraries(e.g., through
AdRequest.setLocation() of the Admob), the purpose is set to
“for target advertising”. Otherwise, if the location is obtained
by social network related libraries (e.g., Facebook SDK), the
purpose becomes “for location-based social networks”. For the
contact information, if it is used by SMS related APIs (e.g.,
SmsManager.sendTextMessage()), we let the purpose be “to
send SMS”. If the contact information is sent through email
related intent (e.g., the action is ACTION_SEND and the intent
includes extra data EXTRA_EMAIL), the purpose becomes “to
send email”. We will investigate how to infer more purposes
in future work.

Postcondition is the last optional element. It is used to
describe two kinds of conditions described in Section III-B.6
(i.e., UI events and hardware events). For example, as shown in
Fig.6, the API (i.e., Camera.open()) is triggered after a button
is pressed(i.e., onClick()), we add “when you press * button”
after the sentence.

2) Additional Sentences: After generating sentence for
the statement that calls sensitive API/URI, we add addi-
tional sentence to describe whether this information will be

Fig. 6. Code snippet of an app using camera.

retained/transferred or not. If the information is retained in
file or log, we add a sentence saying “This information will
be written to file/log” after the generated sentence. Similarly,
if the information is sent out through internet or SMS, we add
a sentence saying “This information will be sent out through
internet/SMS”. If the information is obtained by the host app
and transferred to a third-party library, we add a sentence
indicating that this information will be transferred to the
corresponding third-party library. Similarly, if the information
is collected by a third-party library and transferred to the host
app, we add a sentence saying that “This information will be
transferred to the host app”.

3) Paragraph Generation: A privacy policy contains mul-
tiple parts. We also divide the generated sentences into four
sections by referring the privacy policy template [35].

Personally Identifiable Information: We put all sentences
about personally identifiable information in this section.
According to [36] and [37], the personally identifiable infor-
mation includes: account, IP address, MAC address, device
ID, SIM card number, phone number, contact, call log,
voice/microphone, camera/audio, SMS, calendar, location,
country name, postal code, installed application list, visited
URIs, and browser bookmarks.

Non-Personally Identifiable Information: This section con-
tains sentences describing behaviors that are related to the non-
personally identifiable information, including network type
and browser type.

Cookies: If an app uses cookies to identify the user, we
add a paragraph that describes such behaviors. More specially,
if the app invokes cookies-related APIs, such as CookieM-
anager.getCookie(String), a sentence “Cookies are files with
small amount of data, which may include an anonymous
unique identifier. Cookie will be used by:[User]” will be added
into the generated privacy policy. The User here is the app or
the third-party libs that call cookie-related APIs.

Third-Party Lib and Information Disclosed to Them: If an
app uses third-party libraries that access personal information,
this section contains sentences relevant to such behaviors.

E. Post-Process

The generated document may contain duplicate sentences
in a random order. To improve the readability, we perform
two additional processing: removing duplicate sentences and
changing the order of sentences.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 873

Fig. 7. Personal information ontology from http://www.w3.org/TR/vcard-rdf/

1) Removing Duplicate Sentences: Duplicate sentences
refer to multiple sentences having the same meaning in one
privacy policy. It may appear due to two reasons: (1) An app
calls different APIs that get the same kind of information.
For example, there are three APIs, including getAccounts(),
getAccountsByType(), and getAccountsByTypeAndFeatures(),
for obtaining the account information. If they appear in
one app, AutoPPG may generate three sentences. (2) The
information obtained by one API covers the information
gained through another API. For example, an app invokes
both getLastKnownLocation() and getLatitude(). The former
function gets the location information, while the latter obtains
the latitude. AutoPPG will generate two sentences for them.
However, since the location information is more general than
the latitude, we can combine the two sentences into one.

To remove duplicate sentences in the first case, we group
APIs requesting the same kind of information together. When
generating sentences, if multiple APIs in the same group are
called by the same collector, the corresponding sentence will
be generated only once. We also group those content provider’s
URI strings and URI fields to achieve the same purpose.

To remove duplicate sentences in the second case, we build
a tree structure for personal information. Note that if the
information on the parent node is collected, the information
collected in its sub-tree is covered. We use a personal infor-
mation ontology [38], [39] to build up such model. Ontology
is a formal representation of a body of knowledges within a
given domain [40]. The personal information ontology [38]
covers all personal information, and organizes the personal
information in a hierarchy structure (Fig. 7). We put APIs
and URI (fields) into the corresponding classes and properties
of this ontology. For example, getLastKnownLocation() is put
into the class node “location”, and getLatitude() is put into
the property node“latitude”. Then, we perform the depth first
search on the ontology. If both a parent node’s APIs and its
child nodes’ APIs are called, we remove the sentences resulted
from the child nodes’ APIs, and add their personal information
into the the sentence resulted from the parent nodes’ APIs.

2) Rearranging Sentences: After generating the sentences,
we rearrange them according to the importance degree of the

TABLE II

PERSONAL INFORMATION RISK RANK LIST

Fig. 8. Sample document generated by AutoPPG.

corresponding personal information. According to the “Upset
Rate” for different risks studied in [41], we have a risk rank
for different kinds of personal information (Table II). Based
on this rank, we change the appearance order of sentences. For
the information (e.g., cookie) which does not appear in [41],
we put them at the end of the privacy.

Fig. 8 shows a sample privacy policy generated by
AutoPPG. Note that in this app we do not find any information
that will be disclosed to third-party lib.

IV. EVALUATION

We conduct extensive experiments to answer the following
research questions.

• RQ1-Correctness: How is the accuracy of AutoPPG’s
document analysis module and static analysis module?

• RQ2-Readability: How is the readability of the gener-
ated privacy policies?

• RQ3-Adequacy: Does the privacy policies generated by
AutoPPG inform users all collected personal information?

• RQ4-Developer Study: How do the developers perceive
the usability of AutoPPG?

In the following subsections, we first introduce the data set
and then detail the experimental results.

A. Data Set

We download 7,181 apps from Google play, all of which
provide privacy policies. We randomly select 500 apps con-
taining privacy policies in English from them as our dataset.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

874 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

TABLE III

THE APPS UNDER MANUAL CHECKING

It is worth noting that the comparison between generated
privacy policies and existing privacy policies requires time-
consuming manual verification, which cannot be done for a
large number of apps. Therefore, for such experiments, we
randomly select 20 apps that are listed in Table III.

B. Answer to RQ1: Correctness

We evaluate the correctness of AutoPPG from three aspects,
including mapping APIs to their collected information, reach-
ability analysis, and condition analysis.

1) Mapping APIs to Their Collected Information: To eval-
uate the accuracy of mapping APIs to their collected informa-
tion, we randomly select another 150 functions from Susi [16]
other than the 79 APIs mentioned in Section III-A.1. The doc-
ument analysis module takes their signatures and descriptions
as input, and we verify the output manually.

We found that 142 out of 150 APIs have correct results.
The precision of our document analysis module is computed
by the following formula:

precision = True Posi tive

T otal
= 142

150
= 94.7%,

where True Posi tive stands for the number of APIs that
document analysis module can correctly extract the related
information while T otal means the total number of APIs used
in this experiment.

8 out of 150 APIs are mapped incorrectly. The errors are
caused by two reasons. One is due to the structure of the phrase
structure tree generated by Stanford Parser. For example, the
description of the API Cursor.getColumnNames() is: “Returns
a string array holding the names of all of the columns in
the result set in the order in which they were listed in the
result”. AutoPPG identifies the object “a string array” of the
verb “Returns”, but misses “names of all of the columns”. It is
due to the fact that in the output of Stanford parser “names
of all of the columns” is not in the subtree of the object “a
string array”, and our algorithm only searches postpositive
attributes in the subtree of the object. The other reason is the
threshold of semantic similarity. For example, the description
of the API Address.getAddressLine(int) is: “Returns a line
of the address numbered by the given index …”. AutoPPG
identifies the object “line” of the verb “Returns”, but misses
“of the address”. It is because the semantic similarity between
the object “line” and the information extracted from method

name (i.e., “Address Line”) is larger than the threshold and
hence AutoPPG does not extract the additional information.

2) Reachability Analysis: We randomly select 16 apps that
request permission ACCESS_FINE_LOCATION and call two
location-related APIs (i.e., getLatitude() and getLongitude()),
and manually verify the results from AutoPPG. In two apps,
all statements that call these two APIs are reachable from
entry points. 13 apps have both feasible and infeasible code.
For example, the app com.dooing.dooing calls getLatitude()
in two methods <com.dooing.dooing.NewTask: void m()>
and <com.dooing.dooing.cg: void a()>. However, the latter
method is never invoked by other methods. In one app (i.e.,
com.smartsol.congresoandroid, all statements that call these
two APIs are infeasible. In total, the reachability analysis can
successfully remove 89 false sentences due to infeasible code.

3) Condition Analysis: We compare AutoPPG with App-
Context [27] by instructing them to process the apps shown in
Table III. Here, we only examine the four kinds of conditions
supported by AppContext. The result shows that AppContext
finds out 84 APIs and their corresponding context informa-
tion. AutoPPG identifies 83 of these 84 APIs. The missed
one is <android.hardware.Camera: android.hardware.Camera
open()> in the app jp.konami.pesm. We manually check it and
find that this API is used in a third-party lib. However, the
app will not execute the code because it does not request the
permission CAMERA in its manifest file.

C. Answer to RQ2: Readability

We first evaluate how many duplicate sentences can be
removed and then employ crowdsourcing to assess the read-
ability of the generated privacy policies.

1) Removing Duplicate Sentences: We count the number of
generated sentences in each app before and after removing the
duplicates. As shown in Fig. 9, the curve with cross is on the
left of the curve with square, meaning that duplicate sentences
exist in many apps. More precisely, without deduplication,
AutoPPG generates 5,782 sentences for 500 apps in total. After
removeing duplicate sentences, only 3,991 sentences are left.
In other words, 30.9% of sentences have been eliminated.

2) Questionnaire: For apps in Table III, we ask users to
read the existing privacy policies and the ones generated by
AutoPPG and answer two questions for each privacy policy.

Q1: “Do you think the above privacy policy is easy to
read?”. We provide four possible answers, including “Very
difficult”, “Difficult”, “Easy”, and “Very easy”.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 875

Fig. 9. Number of sentences before and after removing duplicate sentences

TABLE IV

AGE DISTRIBUTION OF WORKERS

TABLE V

DEGREE DISTRIBUTION OF WORKERS

TABLE VI

THE MAP BETWEEN THE RESULT OF QUESTIONNAIRE AND SCORE

Q2: “If you select (Very) Difficult for the last question,
could you please let us know the detailed reason?”. We also
prepare four possible reasons, including “Too long to read”,
“Unstructured privacy policy”, “Privacy policy is unclear”, and
“Privacy policy is imprecise”, and a comment box where users
can provide other reasons.

All privacy policies and the questions are in one question-
naire. To avoid bias, we anonymize their names so that workers
in Amazon Turk cannot identify the existing and generated
ones. Moreover, we randomize the appearance order of these
privacy policies before publishing them.

3) Background of Workers: After publishing them on Ama-
zon Turk for 3 days, we received 30 responses. Note that each
privacy policy in the questionnaire has been read by the same
30 workers. Table IV and Table V list the ages and obtained
degrees of these workers, respectively. Most workers are
20-50 year old and hold at least high school degree. 19 of
them are male and other 11 workers are female.

4) Result: After getting the answers to Q1, we map them
to different scores as shown in Table VI, and get two data
sets: one for the original privacy policies and one for the
generated ones. Then, we apply two non-parametric hypothesis
tests to the data sets. More precisely, to determine whether
the two data sets are drawn from the same distribution, we
use the Two-Sample Kolmogorov-Smirnov test (K-S) [42].

TABLE VII

THE HYPOTHESES OF TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST

TABLE VIII

THE HYPOTHESES OF MANN-WHITNEY U-TEST

Fig. 10. Readability comparison between the original privacy policies and
the generated privacy policies.

The hypotheses of K-S test are listed in Table VII. To test
if the median values of the two data sets are the same, we
adopt the Mann-Whitney U-test (MWU) [43]. The hypotheses
of MWU test is listed in Table VIII.

Answer to Q1: Fig.10 shows the distribution of all responses
to Q1. We can see that for the generated privacy policies
around 90% readers choose “Easy” and “Very easy” whereas
more than 65% readers select “Difficult” or “Very Difficult”
for the original privacy policies. Table IX lists the results of
hypothesis testing.

For K-S test, the p-value is the possibility that the two data
sets are drawn from the same distribution. If the p-value is
less than 0.05, the result of h = 1 indicates that we can reject
the null hypothesis and accept the alternative hypothesis: the
readability scores of the generated privacy policies and those
of existing privacy policies have different distributions.

For MWU test, the p-value means the probability that two
data sets have the same median. If the p-value is smaller
than 0.05, the result of h = 1 denotes that we can reject
the null hypothesis and accept the alternative hypothesis: the
readability scores of the generated privacy policies and those
of existing privacy policies have different medians.

The last column of Table IX lists the readability scores’
average values. It shows that the generated ones have larger
values than the existing ones in all except the 4th app. We will
detail the reason when presenting the answers to Q2.

Answer to Q2: After analyzing the answers to Q2, we
summarize the reasons why some existing privacy policies
and generated ones are unreadable. For the original privacy

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

876 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

TABLE IX

THE NON-PARAMETRIC TEST RESULT AND EXCEPTION OF THE
READABILITY SCORE OF EXISTING/GENERATED

PRIVACY POLICIES

policies, the major issue raised by the workers is that the
original privacy policies are too long to read. In particular, they
contain much unimportant information but less information
about the collected data. Besides, many workers think that the
original privacy policies are unstructured. For instance, after
reading the 2nd app’s original privacy policy, one worker wrote
“The information regarding sharing information with third
parties is in the middle, easy to miss”. There are also many
workers regarding that the original privacy policies are unclear.
For example, after reading the 1st app’s original privacy policy,
one worker left “In one place it says it is up to the user to
provide personal information, and in another it says it must be
provided to participate in certain things”. Furthermore, some
workers feel that existing privacy policies are imprecise.

In contrast, although some workers also think that the
generated privacy policies have similar issues, the number
of such comments is much less than that for the original
privacy policies as shown in Fig.10. More precisely, some
workers feel that the generated privacy policies are unclear
because they cannot understand the technical words in it. For
example, after reading the generated privacy policy for the 3rd
app, one worker said “There is some technological jargon that
makes it a bit hard to read”. There are some workers thinking
that several generated privacy policies are unstructured. For
instance, AutoPPG identifies five third-party libraries in the
20th app, and describes their behaviors in the same paragraph.
Therefore, workers think that it is unstructured. Besides,
several workers regard that a few generated privacy policies
are too long. As an example, AutoPPG finds that the 4th
app has two third-party libraries that collects multiple kinds
of information, and depicts their behaviors in the generated
privacy policy. In contrast, the original privacy policy does
not have such descriptions. Finally, a few workers feel that
some generated privacy policies are imprecise. For example,

the generated privacy policy for the 10th app says that device
ID will be accessed without giving user additional information.

As how to construct effective privacy notes and display them
is still an open problem [44], we will investigate it to enhance
the privacy policy generated by AutoPPG in future work.

D. Answer to RQ3: Adequacy

We compare the coverage of the generated privacy policies
on the collected personal information and that of the existing
privacy policies for the apps in Table III. In particular, we
focus on 10 kinds of personal information, including device
ID, location, account, camera, audio, installed app list, cookies,
phone number, call log, calendar, and count the number of
third-party libraries mentioned in the privacy policies.

Table X lists the comparison result that have been manually
verified. It shows that the generated privacy policies contain
45 kinds of personal information. However, existing privacy
policies just list 29 kinds of personal information in total.
In other words, AutoPPG identifies more personal information
collected by apps than the existing privacy policies. Moreover,
the generated privacy policies list 20 third-party libraries
whereas the existing privacy policies only mention 4. For
example, the 20th app’s privacy policy only informs users that
device ID will be used whereas the privacy policy generated
by AutoPPG indicates that both device ID and camera will be
used. Moreover, the 20th app’s existing privacy policy does
not mention third-party libraries whereas AutoPPG reveals 5
third-party libraries used by this app.

Based on Table X, we found two kinds of issues in existing
privacy policies. First, some privacy policies are incomplete
because they do not include all personal information accessed
by the app. For example, 4 apps (the 1st, 6th, 10th, 17th
app in Table X) use the application list in code but none
of them declares it in the privacy policies. Second, some
privacy policies contain certain personal information that is not
obtained by apps. For example, the 14th app’s privacy policy
contains the sentence “we collect information regarding your
device type, operating system and version, …, the device’s
geo-location”. However, the app does not request location
related permission in the manifest, meaning that it will not
access location information. AutoPPG can avoid these issues
because it uses code level information to generate privacy
policy.

E. Answer to RQ4: Developer Study

To understand how the developers perceive the usability of
AutoPPG, we collect the developers’ email addresses from
Google Play and ask them to finish a survey, which contains
a privacy policy generated by AutoPPG and the questions
(i.e., Q1-Q4). We sent emails to 3,700 developers and only
received 45 responses in 3 days as developers may not check
them frequently. For example, some emails addresses may be
used for Q&A because they reply with FAQ automatically.
The results show that most developers, who reply our emails,
would like to use AutoPPG to facilitate them.

Q1: “If our tool is available to generate the privacy policy
template for your app, would you like to use the tool?”.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 877

TABLE X

COMPARING THE COVERAGE OF GENERATED PRIVACY POLICIES AND THAT OF EXISTING PRIVACY POLICIES.
“N”: NEW PRIVACY POLICIES, “O”: OLD PRIVACY POLICIES

26.7% developers (12/45) selected “Absolutely YES” and
53.3% developers (24/45) selected “YES”. Only 20.0% devel-
opers (9/45) selected “NO”. 3 developers wrote down the
reasons, including, “too busy”, “It doesn’t interest me”, and
“nothing is saved besides the data entered by the user”.

Q2: “When you integrate third-party libraries in your app,
do you know which privacy information will be accessed
by them?”. We want to see if developers know the third-
party libraries’ behaviors related to privacy information. 42.2%
developers (19/45) select “NO” and 2.2% developers (1/45)
select “Absolutely NO”. AutoPPG can help these developers
profile such behaviors in third-party libraries.

Q3: “Since third-party libraries seldom provide source code,
would you like to use our tool to identify the third-party
libraries’ behaviors related to users’ privacy information?”.
84.4% developers select “Absolutely YES” (9/45) and “YES”
(29/45). 15.6% (7/45) developers select “NO” and 3 developers
left the reasons: “I mostly use open source libs”, “I use open
source library”, and “breaking someone else’s trust and code”.

Q4: “If the development of your apps were outsourced,
would you like to use our tool to generate the privacy policy
template for your apps?”. This question is to determine if
AutoPPG would be used when the development of apps is
outsourced (i.e., the owner does not understand the source
code). 84.4% developers select “Absolutely YES” (9/45) and
“YES” (29/45). Only 15.6% developers (7/45) refused to use
AutoPPG. One gave the reason: “If I was outsorsing the
development, I would outsource the privacy policy preparation
along with it, to the same entity”. Unfortunately, even app
developers may not be able to write correct privacy policies.

V. DISCUSSION

This section discusses the limitations of AutoPPG and our
future work. First, we use the mapping between APIs/URIs to
permissions provided by PScout [17]. Backes et al., recently
found that PScout may lead to false mappings [45]. We will
use the new mapping in [45] once it is available. Moreover, we

will include more libraries’ class names in the list to increase
the accuracy of identifying third-party libraries.

Second, since the callback method is implemented by the
app but invoked by the Android framework, the control flow
is implicitly transferred to the callback method via the frame-
work [46]. As AutoPPG only analyzes apps without examining
the framework, it may miss some control and data flows.
Currently, AutoPPG only handles the UI callbacks listed in
the official document when conducting the condition analysis.
In future work, we will leverage the methods proposed in [46]
to obtain the complete control and data flows and then handle
more callback methods.

Third, when checking the parameters to the content
providers, AutoPPG currently cannot handle complex string
operations such as “append”, “split” [47]. Hence, AutoPPG
may miss the use of some sensitive URIs. We will employ
string analysis [48] to approach this problem in future work.
Moreover, since AutoPPG only employs static analysis to
identify apps’ behaviors related to personal information, it may
lead to false positives. We will incorporate dynamic checking
to remove them in further work.

VI. RELATED WORK

We introduce closely related works on privacy policy, pri-
vacy policy generator, and software artifacts generation.

A. Privacy Policy

Since privacy policies are written in natural language, some
studies investigated how to parse privacy policies and mine
information from them. Breaux and Anton [49] present a
methodology for directly extracting access rights and obliga-
tions from the Health Insurance Portability and Accountability
Act (HIPAA) Privacy Rule. To automate the process, semantic
patterns are employed to handle the access control policy
[50], [51]. Recent studies [52], [53] compared the behaviors
described in privacy policy with the actual behaviors in code
to detect problematic privacy policies.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

878 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Some studies used machine learning techniques to analyse
the features of privacy policies. Costante et al., use machine
learning algorithm to analyse the completeness of privacy
policies [54]. Zimmeck et al. combine crowdsourcing and
machine learning techniques to check essential policy terms
in privacy policies [55]. Liu et al. adopt HMM to perform the
automatic segment alignment for policies [56], [57].

All these works focus on existing privacy policies and make
no effort to actively generate new privacy policies.

B. Privacy Policy Generator

Although Privacy Informer [8] was proposed to automati-
cally generate privacy policies, it can only analyse the source
code of mobile apps created through App Inventor, but it
cannot generate privacy policies for normal apps due to the
lack of source code.

PAGE [58] is an Eclipse plug-in that enables developers to
create privacy policies during the developing process. How-
ever, PAGE is similar to those online privacy policy generators
since it does not analyse apps’ source code and it requires
developers to answer a list of questions such as “What type
of data do you collect” and “Do you share data with others”.

AppProfiler is another similar work [2]. It detects privacy-
related behaviors in apps and explains them to end users [2].
However, AppProfiler is based on the manually created knowl-
edge base which maps the privacy-relevant APIs to appropriate
behaviours. Instead, AutoPPG can automatically map APIs
to their collected personal information by using information
extraction techniques. Moreover, AppProfiler can only identify
system calls, method name, and class name, but it cannot per-
form the data flow analysis and cannot find which information
will be retained.

This paper is an extended version of our previous workshop
paper [59]. Comparing with [59], we extend the contents from
the following aspects. First, we enhance the static analysis
module by adding the reachability analysis, the information
transfer analysis, and the enhanced condition analysis with six
kinds of conditions. Note that the previous study [59] does
not remove infeasible code and only analyzes one kind of
condition. The enhancements can remove the false sentences
and provide more detailed information to users.

Second, we propose a new template for generating privacy
policy, which is much more expressive than the old one in [59].
More precisely, it includes six kinds of conditions found in
code and two kinds of additional sentences for describing the
information to be retained and/or transferred.

Third, we propose a new method to select verbs for personal
information. Note that the previous study [59] selected the verb
for personal information by analyzing existing documents.
However, the selected verb may not reflect the real behaviors
of the apps. In this paper, for most APIs, we manually define
verbs for the corresponding personal information. Moreover,
if an app accesses external storage through APIs, we conduct
data flow analysis to determine its real operation (i.e., read
or write) and then automatically select the verbs. Similarly, if
the app obtains information by querying content provider with
URIs, AutoPPG determines the verb according to the operation
(e.g., query, insert, delete).

Fourth, we conduct more evaluations on the enhanced
AutoPPG. More precisely, we compare the sensitive APIs
found by AutoPPG and AppContext, and evaluate the reach-
ability analysis. We conduct new experiments to evaluate the
readability of the generated privacy policies, where the ques-
tionnaires are carefully designed to avoid bias and obtain more
information about the workers. Besides, we use hypothesis
testing to analyze the results and find that the privacy policies
generated by AutoPPG have a better readability. Moreover,
we also study how the developers perceive the usability of
AutoPPG and find that most developers, who reply our emails,
would like to use AutoPPG to facilitate them.

C. Software Artifact Generation

Privacy policy is a category of software artifact, thus the
previous studies related to other software artifacts (e.g., test
case and test code) provide the inspiration for our work.
Rayadurgam et al. proposed a method to generate the test cases
according to structure coverage criteria. The designed model
checker can produce complete test sequences that provide a
pre-defined coverage of any software artifact [60]. Javed et al.
proposed a new method to generate the test cases automati-
cally. This method used the model transformation technique to
generate these test cases from a platform-independent model
of the system [61]. Harman et al. proposed a mutation-based
test data generation approach that combines dynamic sym-
bolic execution and search-based software testing. This hybrid
generation method gets the better performance than state-of-
the-art mutation-based test data generation approaches [62].
Matthew et al. proposed a tool to generate test code in model-
driven systems. Moreover, they quantified the cost of the test
code generation versus application code and found that the
artifact templates for producing test code are simpler than
those used for application code [63].

Zhang et al. propose the system DESCRIBEME to generate
security-centric descriptions for Android apps [28]. The
differences between DESCRIBEME and AutoPPG include:
(1) They have different purposes. More precisely,
DESCRIBEME aims at generating descriptions while
AutoPPG intends to help developer create privacy policy.
(2) DESCRIBEME only considers sensitive APIs while
AutoPPG analyzes both sensitive APIs and URIs.
(3) DESCRIBEME can only extract three kinds of conditions
for sensitive APIs while AutoPPG can extract five kinds.
(4) DESCRIBEME identifies high-level patterns from
behavior graphs to reduce the size of generated description.
Instead, AutoPPG first generates sentences for all behaviors
relevant to personal information and then removes duplicate
sentences and employs the ontology graph to combine
remaining sentences. Moreover, AutoPPG divides the
generated sentences into multiple parts and rearrange the
order of generated sentences.

VII. CONCLUSION

We propose and develop a novel system named AutoPPG
to automatically construct correct and readable descriptions
to facilitate the generation of privacy policy for Android

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

YU et al.: TOWARD AUTOMATICALLY GENERATING PRIVACY POLICY FOR ANDROID APPS 879

applications (i.e., apps). AutoPPG can identify the personal
information collected or used by an API from its description,
name, and the class name. It can also discover an app’s behav-
iors related to users’ personal information by conducting static
code analysis, and generate correct and accessible sentences
for describing these behaviors. The experimental results using
real apps and crowdsourcing demonstrate the correctness of
AutoPPG, the readability and the adequacy of the generated
privacy policies. Moreover, most developers who answer our
survey would like to use AutoPPG to facilitate them. In future
work, besides further improving the system, we will examine
more apps and involve more persons to evaluate AutoPPG.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their quality
reviews and suggestions.

REFERENCES

[1] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android per-
mission model and enforcement with user-defined runtime constraints,”
in Proc. ASIACCS, 2010, pp. 328–332.

[2] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: A flexible method of
exposing privacy-related behavior in Android applications to end users,”
in Proc. CODASPY, 2013, pp. 221–232.

[3] Trusted legal Agreements, accessed on 2016. [Online]. Available:
https://termsfeed.com

[4] “The need for privacy policies in mobile apps—An overview,” iubenda
s.r.l,” FTC Staff Report, Tech. Rep., 2013.

[5] (2013). The Need for Privacy Policies in Mobile Apps—An Overview.
[Online]. Available: http://goo.gl/7AB2aB

[6] “Path social networking app settles ftc charges it deceived consumers
and improperly collected personal information from users’ mobile
address books,” Federal Trade Commission, Tech. Rep. Case3:13-cv-
00448-RS, 2013. [Online]. Available: https://goo.gl/Z31BAU

[7] C. Meyer, E. Broeker, A. Pierce, and J. Gatto. (2015). FTC Issues
New Guidance for Mobile App Developers that Collect Location Data.
[Online]. Available: http://goo.gl/weSNRB

[8] D. Y. Miao, “PrivacyInformer: An automated privacy description gener-
ator for the mit app inventor,” M.S. thesis, Massachusetts Inst. Technol.,
Cambridge, MA, USA, 2014.

[9] MIT App Inventor, accessed on 2015. [Online]. Available:
http://appinventor.mit.edu

[10] (2015). Google Java Style. https://goo.gl/1RtxN1
[11] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information

Retrieval. Cambridge U.K.: Cambridge Univ. Press, 2008.
[12] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: Toward discovering

vulnerabilities in Android applications,” IEEE Micro, vol. 35, no. 1,
pp. 44–53, Jan. 2015.

[13] C. Manning and H. Schutze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, MA, USA: MIT Press, 1999.

[14] M. Cutts, Oxford Guide to Plain English, 4th ed. Oxford, U.K.: Oxford
Univ. Press, 2013.

[15] D. Cer, M. Marneffe, D. Jurafsky, and C. Manning, “Parsing to stanford
dependencies: Trade-offs between speed and accuracy,” in Proc. LREC,
2010, pp. 1–5.

[16] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for
classifying and categorizing Android sources and sinks,” in Proc. NDSS,
2014, pp. 1–15.

[17] K. Au, Y. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the Android
permission specification,” in Proc. CCS, 2012, pp. 217–228.

[18] Natural Language Toolkit, accessed on 2015. [Online]. Available:
http://www.nltk.org/

[19] J. Cowie and W. Lehnert, “Information extraction,” Commun. ACM,
vol. 39, no. 1, pp. 80–91, 1996.

[20] Y. Xu, M.-Y. Kim, K. Quinn, R. Goebel, and D. Barbosa, “Open
information extraction with tree kernels,” in Proc. HLT-NAACL, 2013,
pp. 868–877.

[21] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” in Proc. IJCAI, 2007,
pp. 1–16.

[22] WordNet: A lexical Database for English, accessed on 2015. [Online].
Available: http://wordnet.princeton.edu/

[23] Neo4j: The World’s Leading Graph Database, accessed on 2015.
[Online]. Available: http://neo4j.com/

[24] S. Arlt and M. Schäf, “Joogie: Infeasible code detection for java,” in
Proc. CAV, 2012, pp. 767–773.

[25] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of Android
applications’ permissions,” in Proc. SERE, 2012, pp. 45–46.

[26] S. Arzt et al., “Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps,” in Proc. PLDI,
2014, pp. 259–269.

[27] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppCon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in Proc. ICSE, May 2015, pp. 303–313.

[28] M. Zhang, Y. Duan, Q. Feng, and H. Yin, “Towards automatic generation
of security-centric descriptions for Android apps,” in Proc. CCS, 2015,
pp. 518–529.

[29] J. Ostrander, Android UI Fundamantals: Develop Design. Berkeley, CA,
USA: Peachpit, 2012.

[30] I. Darwin, Android Cookbook. Sebastopol, CA, USA: O’Reilly Media,
Inc., 2012.

[31] Android Developers: View.OnKeyListener, accessed on 2015. [Online].
Available: http://goo.gl/hdaVg5

[32] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in Android ad libraries,” in Proc. MoST, 2012,
pp. 1–10.

[33] AdMob by Google: Targeting, accessed on 2015. [Online]. Available:
https://goo.gl/c4uww1

[34] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proc. UbiComp, 2012,
pp. 501–510.

[35] (2015). Generic Privacy Policy Template. [Online]. Available:
https://media.termsfeed.com/pdf/privacy-policy-template.pdf

[36] (2015). Guide to Protecting the Confidentiality of Personally Identifiable
Information (PII). [Online]. Available: https://goo.gl/gEzSoI, .

[37] R. V. Connelly. What is Personally-Identifiable Information (PII).
[Online]. Available: http://goo.gl/lDpPsZ

[38] H. Halpin, B. Suda, and N. Walsh. (2015). An Ontology for vCard.
[Online]. Available: http://www.w3.org/2006/vcard/

[39] R. Iannella and S. Identity. (2015). vCard Ontology—For Describ-
ing People and Organizations. [Online]. Available: http://www.w3.org/
TR/vcard-rdf/

[40] (2015). Ontology Structure. [Online]. Available: http://goo.gl/sBGgzZ
[41] A. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but vibration

ain’t one: A survey of smartphone users’ concerns,” in Proc. SPSM,
2012, pp. 33–44.

[42] Two-Sample Kolmogorov-Smirnov Test. [Online]. Available:
http://goo.gl/j9z8CJ

[43] Wilcoxon Rank Sum Test. [Online]. Available: http://goo.gl/t6ihv2
[44] F. Schaub, R. Balebako, A. Durity, and L. Cranor, “A design space for

effective privacy notices,” in Proc. ACM SOUPS, 2015, pp. 1–17.
[45] M. Backes, S. Bugiel, E. Derr, S. Weisgerber, P. McDaniel, and

D. Octeau, “On demystifying the Android application framework: Re-
visiting Android permission specification analysis,” in Proc. USENIX
SEC, 2016, pp.1101–1118.

[46] Y. Cao et al., “EdgeMiner: Automatically detecting implicit control flow
transitions through the Android framework,” in Proc. NDSS, 2015, pp. 1–
15.

[47] F. Shen et al., “Information flows as a permission mechanism,” in Proc.
ASE, 2014, pp. 515–526.

[48] J. D. Vecchio, F. Shen, K. M. Yee, B. Wang, S. Y. Ko, and L. Ziarek,
“String analysis of Android applications (N),” in Proc. ASE, 2015,
pp. 680–685.

[49] T. Breaux and A. Antón, “Analyzing regulatory rules for privacy
and security requirements,” IEEE Trans. Softw. Eng., vol. 34, no. 1,
pp. 5–20, Jan./Feb. 2008.

[50] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
extraction of security policies from natural language software docu-
ments,” in Proc. FSE, 2012, Art. no. 12.

[51] J. Slankas, X. Xiao, L. Williams, and T. Xie, “Relation extraction for
inferring access control rules from natural language artifacts,” in Proc.
ACSAC, 2014, pp. 366–375.

[52] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies
of Android apps?,” in Proc. IFIP/IEEE DSN, Jun. 2016, pp. 538–549.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

[53] R. Slavin et al., “Toward a framework for detecting privacy policy
violations in Android application code,” in Proc. ICSE, Jun. 2016,
pp. 538–549.

[54] E. Costante, Y. Sun, M. Petković, and J. Hartog, “A machine learn-
ing solution to assess privacy policy completeness,” in Proc. WPES,
Oct. 2012, pp. 91–96.

[55] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for automat-
ically analyzing Web privacy policies,” in Proc. USENIX Secur., 2014,
pp. 1–16.

[56] F. Liu, R. Ramanath, N. Sadeh, and N. Smith, “A step towards usable
privacy policy: Automatic alignment of privacy statements,” in Proc.
COLING, 2014, pp. 884–894.

[57] R. Ramanath, F. Liu, N. Sadeh, and N. Smith, “Unsupervised alignment
of privacy policies using hidden Markov models,” in Proc. ACL, 2014,
pp. 605–610.

[58] M. Rowan and J. Dehlinger, “Encouraging privacy by design concepts
with privacy policy auto-generation in eclipse,” in Proc. ETX, 2014,
pp. 9–14.

[59] L. Yu, T. Zhang, X. Luo, and L. Xue, “AutoPPG: Towards automatic
generation of privacy policy for Android applications,” in Proc. ACM
SPSM, 2015, pp. 39–50.

[60] S. Rayadurgam and M. P. E. Heimdahl, “Coverage based test-case
generation using model checkers,” in Proc. ECBS, Apr. 2001, pp. 83–91.

[61] A. Z. Javed, P. A. Strooper, and G. N. Watson, “Automated generation
of test cases using model-driven architecture,” in Proc. AST, May 2007,
p. 3.

[62] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-
based test data generation,” in Proc. ESEC/FSE, 2011, pp. 212–222.

[63] M. J. Rutherford and A. L. Wolf, “A case for test-code generation in
model-driven systems,” in Proc. GPCE, 2003, pp. 377–396.

Le Yu received the bachelor’s and master’s degrees
in information security from the Nanjing University
of Posts and Telecommunications. He is currently
pursuing the Ph.D. degree with the Department of
Computing, The Hong Kong Polytechnic University.
His current research focuses on mobile security.

Tao Zhang received the Ph.D. degree in computer
science from the University of Seoul. He is cur-
rently a Research Associate with the Department of
Computing, The Hong Kong Polytechnic University.
He is also an Associate Professor with the College
of Computer Science and Technology, Harbin Engi-
neering University. He was an Assistant Professor
with the School of Computer Science and Technol-
ogy, NUPT. His research interests include mining
software repositories and security for Android Apps.

Xiapu Luo received the Ph.D. degree in computer
science from The Hong Kong Polytechnic Univer-
sity. He was a Post-Doctoral Research Fellow with
the Georgia Institute of Technology. He is currently
a Research Assistant Professor with the Department
of Computing and an Associate Researcher with the
Shenzhen Research Institute, The Hong Kong Poly-
technic University. His current research focuses on
smartphone security and privacy, network security
and privacy, and Internet measurement.

Lei Xue received the B.S. and M.S. degrees in major
of information security from the Nanjing University
of Posts and Communications. He is currently pur-
suing the Ph.D. degree with the Department of Com-
puting, The Hong Kong Polytechnic University. His
research interest includes network security, network
measurement, and mobile security.

Henry Chang was the IT Advisor to the Hong Kong
Privacy Commissioner and the Founding Chair with
the Technology Working Group, Asia Pacific Privacy
Authorities. He is currently an Adjunct Associate
Professor with the Law Department, The University
of Hong Kong. He is also a Hong Kong appointed
Technical Expert to the ISO Identity Management
and Privacy Technologies Group.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on May 15,2020 at 03:39:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

