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ABSTRACT
A privacy policy is a statement informing users how their
information will be collected, used, and disclosed. Failing to
provide a correct privacy policy may result in a fine. How-
ever, writing privacy policy is tedious and error-prone, be-
cause the author may not well understand the source code,
which could be written by others (e.g., outsourcing), or does
not know the internals of third-party libraries without source
codes. In this paper, we propose and develop a novel sys-
tem named AutoPPG to automatically construct correct and
readable descriptions to facilitate the generation of privacy
policy for Android applications (i.e., apps). Given an app,
AutoPPG first conducts various static code analyses to char-
acterize its behaviors related to users’ private information
and then applies natural language processing techniques to
generating correct and accessible sentences for describing
these behaviors. The experimental results using real apps
and crowdsourcing indicate that: (1) AutoPPG creates cor-
rect and easy-to-understand descriptions for privacy policies;
and (2) the privacy policies constructed by AutoPPG usually
reveal more operations related to users’ private information
than existing privacy policies.

Categories and Subject Descriptors
K.4.1 [Computing Milieux]: Public Policy Issues—Pri-
vacy
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1. INTRODUCTION
As smartphones have become an indispensable part of our

daily lives, users are increasingly concerned about the pri-
vacy issues on the personal information collected by various
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apps. Although the Android system can list all permissions
required by an app before its installation, such approach
may not help users understand the app’s behaviors, espe-
cially those related to users’ private information, because of
the lack of precise and accessible descriptions [27, 34]. Al-
ternatively, developers can provide privacy policies to their
apps for informing users how their information will be col-
lected, used, and disclosed [4]. Actually, the Federal Trade
Commission (FTC) suggested mobile developers to prepare
privacy policies for their apps and make them easily acces-
sible through the app stores [6]. Other major countries or
areas (e.g., European, Australia, etc.) have privacy laws for
requiring developers to add privacy policies [7].

Failing to provide a correct privacy privacy may result in
a fine. For instance, the social networking app “Path” was
fined $800,000 in 2013 because it collected and stored users’
personal information without declaring the behaviors in its
privacy policy [8]. As another example, FTC filled a com-
plaint1 against a popular app named “Brightest Flashlight
Free” in 2014 because its privacy policy does not correctly
reflect how it uses personal data [25].

However, writing privacy policy is tedious and error-prone
because of many reasons. For example, the author of a pri-
vacy policy may not well understand the app’s source code,
which could be outsourced, or the precise operation of each
API invoked. Moreover, the developer may not know the in-
ternals of the integrated third-party libraries, which usually
do not provide source code. Existing approaches for gener-
ating privacy policies cannot solve these issues because few
of them analyze code and therefore they heavily rely on hu-
man intervention, such as answering questions like “what
personal information do you collect?”. Moreover, Privacy
Informer [26] could only generate privacy policies for apps
created by App Inventor2 instead of normal apps.

To facilitate the generation of privacy policy, in this pa-
per, we propose a novel system named AutoPPG to auto-
matically construct correct and readable descriptions for an
app’s behaviors related to personal information. It is non-
trivial to develop AutoPPG because of several challenging
issues. First, how to automatically map APIs to private
information? Note that other similar studies (e.g., AppPro-
filer [34]) did it manually. By exploiting the Google Java
style followed by the Android framework [9] and informa-
tion extraction techniques [24], we propose a new algorithm
(i.e., Algorithm 1 in Section 3.1) to address this issue.

1http://goo.gl/7pjSgC
2http://appinventor.mit.edu



Second, how to profile an app’s behaviors related to pri-
vate information through static analysis? By leveraging the
app property graph(APG) [30], we design various graph
traversals to answer questions like (Section 3.2): does the
app collect private information? If yes, does the host app
or any third-party library collect such information? Does
the app notify users when collecting the information? Will
the app store the information locally or send it to a re-
mote server? Third, how to construct correct and read-
able descriptions? By analyzing 500 apps’ privacy poli-
cies and employing natural language processing (NLP) ap-
proaches, AutoPPG can generate correct and accessible de-
scriptions (Section 3.3 and 3.4), which are validated through
crowdsourcing-based experiments (Section 4.3).

In summary, this paper makes the following contributions:

1. We propose AutoPPG, a novel system that automat-
ically constructs correct and readable descriptions to
facilitate the generation of privacy policy for Android
applications. To our best knowledge, AutoPPG is the
first system that can construct such information by
leveraging static code analysis and NLP techniques.

2. We tackle several challenging issues for developing Au-
toPPG, including automatically mapping APIs to pri-
vate information, profiling an app’s behaviors related
to private information through static analysis, and con-
structing correct and readable descriptions. These tech-
niques can be applied to solve other research problems,
such as malware detection.

3. We have implemented AutoPPG and perform care-
ful experiments with real apps to evaluate its perfor-
mance. The experimental results show that AutoPPG
can construct correct and easy-to-understand descrip-
tions for privacy policy and the privacy policies re-
sulted from AutoPPG usually reveal more operations
related to users’ private information than existing pri-
vacy policies.

The rest of this paper is structured as follows. Section 2
presents the background. Section 3 details the design and
implementation of AutoPPG while Section 4 describes the
experimental results. Section 5 introduces the threats to
validity of this study. After introducing the related work in
Section 6, we conclude the paper and introduce the future
work in Section 7.

2. BACKGROUND

2.1 Privacy policy
According to [7], a privacy policy may contain five kinds

of information: (1) contact and identity information; (2) the
classification of personal information that the app wants to
collect and use; (3) the reasons why the data is needed;
(4) authorization information for the public to third parties
and persons; (5) the right that users have. Since (1) and
(5) concern users’ information and rights and (3) explain
why certain data is needed, they cannot be extracted by
analyzing an app’s code. Therefore, AutoPPG focuses on
generating statements for (2) and (4).

As an example, Fig. 1 shows part of the app com.macropinch
.swan’s privacy policy. It contains the identity information
shown in the top part, and the contact information shown in

We do NOT collect Personal Information. ....... Personal Information includes 
your geographic location information, names, physical addresses, email addresses, 
telephone......
We collect Non-Personal Information. "Non-Personal Information" is information 
that does not identify you or any other individual, and includes Session and Usage 
Data, Log Data and Aggregate Information.......

Although we don't collect any Personal Information, the Applications, the Services 
and the Site use third party services, which may do so. These services are:
·       Flurry.
·       Google Admob. 
·       Millennial Media. 

We may use Non-Personal Information for any purpose, including for our own 
internal purposes; to measure traffic patterns; to understand demographics, ......

We may disclose Non-Personal Information for any purpose. We do not combine 
Non-Personal Information with Personal Information......

MacroPinch ("MP," "us" or "we") has created this Policy to explain our privacy 
practices so you will understand what information about you is collected, used 
and disclosed with respect to the Applications, the Services and the Site.

If you have any questions...... please contact us at .......

Information Collected

Information Disclosed and Third Party Lib Used

Figure 1: Privacy Policy Example: Information
com.macropinch.swan can collect, use, and disclose

the bottom part, both of which are in dashed line rectangles.
Note that such information belongs to (1) and AutoPPG
cannot generate. The sentences in the red box present which
information will be collected and the statements in the blue
box describe how the information will be disclosed. Note
that such information belongs to (2) and (4), respectively,
and therefore AutoPPG can create them.

2.2 The sentence structure

We would collect your location information to improve our service.
<executor> <action> <resource> <purpose>

Figure 2: The structure of a general sentence in privacy
policy.

A general sentence in privacy policy contains three key
parts, including executor, action, and resource. Other parts
such as condition (i.e., when this action happens), purpose
(i.e., why “we” do this thing), and target (i.e., whom “we”
send this information to) are optional.

• Executor is the entity who collects, uses and retains
information. If the subject is “we”, like the sentence
shown in Fig. 2, the behaviour is executed by the
app; if the subject is the third party library, then this
information will be disclosed to third party library.

• Action refers to what the executor does, such as “col-
lect” in Fig. 2.

• Resource is the object on which an action operates. In
Fig. 2, the resource is “your location information”.

In this paper, private information refers to the private
data that can be obtained by an app from smartphones,
such as “location”, “contact”, “device ID”, “audio”, “video”,
etc. We treat them as resource and they serve as the object
of an action verb, because AutoPPG currently just generates
sentences in active voice.

3. AUTOPPG
As shown in Fig. 3, AutoPPG consists of three modules:
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Figure 3: Overview of AutoPPG, which has three major modules in different dashed-line boxes.

(1) Document analysis module (Section 3.1). Given
an API and its description from the API document, this
module identifies the private information used by this API
automatically by leveraging the Google Java Style [9] and
employing information extraction techniques [24]. The out-
put of this module is used by the static code analysis module
to determine the private information collected by an app.

(2) Static code analysis module (Section 3.2). Given
an app without source code and the mapping of selected
APIs to the private information, this module disassembles
the app’s APK file, turns its statements into intermediate
representation (IR), and inspects the IRs to profile the app
by performing the following four steps: (1) find the private
information collected by apps; (2) locate the collector of
certain private information identified in (1); (3) determine
whether the app asks for user consent explicitly before in-
voking the selected APIs; (4) identify the app’s information
retention strategy.

(3) Privacy policy generation module (Section 3.3,
3.4, and 3.5). Taking in an app’s profile identified through
static code analysis, this module aims at generating read-
able privacy policy. More precisely, we define a template
following the instructions of writing plain English [29](Sec-
tion 3.4), then select suitable verbs according to the pri-
vate information (Section 3.3) to generate sentences, and
finally change the order of sentences and remove duplicate
sentences to improve the expressiveness (Section 3.5).

3.1 Document analysis
In this section, we detail the document analysis module

for identifying the private information used by an API. We
accomplish it by proposing a new algorithm (i.e., Algorithm
1), which takes the official API description, method name,
and class name as input and returns the private information
used by the API.

We use the API descriptions because they provide more
information about an API’s behaviour, such as which infor-
mation the API can use or get. To extract the noun phrases
referring to the collected private information, we need to lo-
cate the main verb and the object of this verb from the de-
scription. For example, function getDeviceId()’s description
is: “Returns the unique device ID, for example, the IMEI for
GSM and the MEID or ESN for CDMA phones”, where the
main verb is “Returns”, and its object is “device ID”.

Using APIs’ descriptions as input is not enough due to the
difficulty of handling all possible descriptions. For instance,
given a sentence with postpositive attributive (e.g., “a list

of ... that ...”), the tool (i.e., Stanford parser [13]) used for
analyzing the sentence will extract the object (i.e., “list”),
which cannot help users understand the details of private
information. Therefore, we add two kinds of information
including method names and class names as the reference
for determining which attributes need to be extracted.

Android framework’s method names usually follow the
Google java style [9] and are written in lowerCamelCase,
which means that the first letters of all words are written
in uppercase except the first word. Moreover, these method
names typically contain verbs and their objects, such as get-
DeviceId(). If a method name is the verb such as open
while its class name is the noun or noun phrases (e.g. “Cam-
era”) [9], we locate the private information from the class
name. Note that Android framework’s class names are typ-
ically written in UpperCamelCase, which means all words
start with uppercase letters.

3.1.1 Sensitive APIs selection
We are interested in APIs that can get the private infor-

mation. Since Susi [32] provides a list of such functions,
we select 79 APIs that can obtain the following informa-
tion: device ID, IP address, location (include latitude, lon-
gitude), country name, postal code, account, phone number,
sim serial number, voice mail number, audio/video, installed
application, visited URLs, bookmark, and cookies. We com-
bine these APIs’ signatures, which contain class names, re-
turn values, method names and parameters with their cor-
responding descriptions obtained from the official website,
and conduct the pre-processing on them.

3.1.2 Pre-processing
As APIs’ signatures and descriptions cannot be directly

used as the input of our algorithm (Alg 1), we first conduct
syntactic analysis on description sentence. We also extract
noun phrase from method name and class name.

Syntactic analysis on API descriptions For each pri-
vacy policy, its description is a complete sentence. To iden-
tify the main verb and its corresponding object, we use
Stanford parser [13], a very popular syntactic analysis tool
[15,40], to construct the sentence’s syntactic structure.

Given a sentence, Stanford parser outputs its parse tree
and typed dependency information. An example is shown
in Fig. 4. Parse tree is the hierarchy structure, thereinto,
each line represents a distinct phrase of the input sentence.
The part-of-speech tags are also contained in parse tree.
A part-of-speech tag is assigned to the category of words



which have the similar grammatical properties. These words
usually play similar roles within the grammatical structure
of sentences. Common English part-of-speech tags include
NN(noun), VB(verb), PP(preposition), NP(noun phrase),
VP(verb phrase), etc. Typed dependency shows the gram-
matical relationships between the words in a sentence. Vir-
tual node “Root” has a root relation that points to the root
word of the sentence. Other common relations between
words include dobj(direct object), nsubj(nominal subject),
prep on (preposition on), etc.

Extracting noun phrase from method name. Our
algorithm (i.e., Algorithm 1) uses the noun phrase contained
in the method name as a reference. The steps for extracting
the noun phrase are presented as follows:

• Removing verb prefixes. The names of the major-
ity of information retrieval functions in Susi [32] are
verb phrases. They usually start with a verb prefix,
such as “get” or “read”, and the verb prefix is followed
by the related private information. In addition, the
verb prefix starts with a lowercase letter and all follow-
ing words start with the uppercase letters. We remove
the verb prefix and keep the noun phrase. To achieve
it, we construct a verb prefix list, which contains 178
verbs, by extracting all prefixes that appear more than
once in Susi’s function list [32].

• Splitting the remaining string into words. After
removing the verb prefix of the method name, we split
the remaining string into distinct words by exploiting
the fact that they start with uppercase letters.

• Removing stop words. Stop words are meaningless
and they should be removed to make the extracted
noun phrase more clear. We employ the stop words
list provided by NLTK [2] to complete this task.

Using the method getAllVisitedUrls as an example to illus-
trate the above steps, we first remove the verb prefix “get”,
and then divide the remaining string into three words in-
cluding “All”, “Visited”, and “Urls”. Finally, in the last step,
“All” is removed, and only “Visited Urls” is kept.

Extracting noun from class name. The fully quali-
fied name of a class consists of the package name and the
class name. For example, “android.hardware.Camera” com-
bines package name “android.hardware” and the class name
“Camera”. Currently, we just extract the class name and
transform it into a list of distinct words.

3.1.3 Private information extraction
Given the syntactic information of an API’s description,

the noun phrase from the API name, and the noun in its class
name, Algorithm 1 extracts the private information used or
obtained by the API. We use the API getRunningAppPro-
cesses() as an example (Figure 4) to explain it.

In line 1-2 of Alogrithm 1, we get the description desc’s
syntactic tree desctree and the typed dependency relation
descdept. The root word usually is the main verb of a sen-
tence. In line 3, we identify the root word root from the
typed dependency. In Figure 4, verb “Return” is extracted.
Then, in line 4, we extract the direct object of the root word
using function ExtractObj. In Figure 4, the object of verb
“Return” is “list”.

The object that we find in line 4 is only one word. If
there are other adjective words or nouns which modify this

(ROOT
  (S
    (VP (VB Returns)
      (NP
        (NP (DT a) (NN list))
        (PP (IN of)
          (NP (NN application) (NNS processes)))
        (SBAR
          (WHNP (WDT that))
          (S
            (VP (VBP are)
              (VP (VBG running)
                (PP (IN on)
                  (NP (DT the) (NN device)))))))))))

ROOT

Returns lista runningareprocessesapplication devicethe
root

dobj

det prep_of

nn
nsubj

aux

prep_on

det

of that on

Figure 4: Syntactic analysis result, including parse
tree and typed dependencies for API getRunningAppPro-
cesses()’s description: “Returns a list of application pro-
cesses that are running on the device”.

object word in typed dependency, we will also extract these
adjective words or nouns and put them before the direct
object obj. For example, for the noun phrase “device ID”, if
“ID” is the direct object of a verb, “device” should also be
extracted and put before “ID”.

Then, we need to use additional information to check if
current object obj contains enough information. We have
two kind of additional information, including noun phrase
in method name, and nouns in class name. We first extract
the noun phrase from the method name (line 6-7). Since
some methods’ names are verbs such as start and they do
not contain any noun phrases, Algorithm 1 also extracts
the nouns in the class name(line 8-10). If neither of them
contains additional information, the algorithm just returns
obj as the private information (line 26).

After getting nameInfo from the method name and the
class name, we calculate the semantic similarity between obj
and nameInfo in order to determine if additional postposi-
tive attributives need to be added after current obj. If one of
the following two conditions is met, we think that obj is sim-
ilar to nameInfo and obj can be directly returned. The first
condition is that the semantic similarity value (simV alue)
calculated by ESA [17] is larger than the threshold (line 12-
14); the second condition is that all distinct words appeared
in nameInfo are included in obj (line 16-18).

Function FindInfo in line 20 is used to find the postpos-
itive attributives of the direct object. If the subtree of the
direct object obj contains phrases “of ...”/“from ...”/“that
...”/“for ...” in desctree, these phrases info are intended to
modify obj and they are also extracted.

In line 21-22, additional attribute info is added after obj
and the new obj is returned as the final result.

In Figure 4, since the object “list” does not represent
the information “Running App Processes” obtained from
method name, the final private information is “list of appli-
cation processes”, which combines the postpositive attribu-
tive and the object. Table 1 lists some samples of identified
private information from APIs.

Semantic similarity comparison. We currently use
Explicit Semantic Analysis(ESA) [17] to compute semantic
relatedness between texts (line 12). Given two documents,



Input: desc: API description, namemethod: name
entity in method name, nameclass: last part of
class name

Output: private information used in this API
1 desctree = StanfordParserTree(desc);
2 descdept = StanfordParserDept(desc);
3 root = ExtractRoot(descdept);
4 obj = ExtractObj(descdept, root);
5 nameInfo = null;
6 if Exist(namemethod) then
7 nameInfo = namemethod;
8 else
9 nameInfo = nameclass;

10 end
11 if nameInfo ! = null then
12 simV alue = Similarity(obj, nameInfo);
13 if simV alue > threshold then
14 return obj;
15 else
16 ConatinName=obj.contain(nameInfo);
17 if ContainName == true then
18 return obj;
19 else
20 info=FindInfo(desctree, descdept);
21 obj = obj + info;
22 return obj;
23 end
24 end
25 else
26 return obj;
27 end

Algorithm 1: Identifying the private information used or
obtained by an API.

API Private information
getSubAdminArea() subadministrative area name

getAccountsByType() accounts of a particular type
getNumberFromIntent() phone number from an Intent

getAllVisitedUrls() site urls

Table 1: Examples of the identified private information
from APIs.

ESA uses machine learning technique to map natural lan-
guage text into a weighted sequence of Wikipedia concepts.
Then ESA computes the semantic relatedness of texts by
comparing their vectors in the space defined by the con-
cepts. We do not use WordNet [5] since WordNet can only
calculate the similarity between distinct words. ESA can
compute the relatedness between arbitrarily long texts. In
Figure 4, semantic relatedness between obj “list” and “Run-
ning App Processes” calculated by ESA is lower than the
threshold (0.5 in our system), thus obj cannot be regarded
as the private information and more information should be
added after it.

After mapping APIs to the private information, we man-
ually group APIs that request the same kinds of private
information together. For example, getAccountsByType and
getAccountsByTypeAndFeatures are in the same group be-
cause they all return the list of all accounts. These API
groups are used to remove the duplicate sentences (Section
3.5).

3.2 Static code analysis
Given an app, we perform the static code analysis to iden-

tify four kinds of information:

• Private information collected by this app.

• Third-party libraries used in this app and the private
information collected by them.

• Conditions under which private information is collected.

• Whether the private information will be retained or
not.

Our static analysis is based on Vulhunter [30] which can
construct an App Property Graph (APG) for each app and
store it in the Neo4j graph database [3]. APG is a combi-
nation of AST (Abstract Syntax Tree), MCG (Method Call
Graph), ICFG (Inter-procedural Control Flow Graph), and
SDG (System Dependency Graph).

To identify the private information collected by an app,
we look for the selected 79 sensitive APIs. Note that the
document analysis module has created a mapping between
each API and the private information.

App can also get the private information through content
providers such as “content://contacts”. PScout [11] iden-
tifies 78 URI strings for Android 4.1.1. We select 8 URI
strings that request the private information including con-
tacts (3 URI strings), calendar, browser history, SMS (2 URI
strings) and call log. We will examine other URI strings in
future work. PScout [11] also provides 31 permissions and
their related URI fields, We select 6 permissions from them
and these permissions contain 615 URI fields. Since the 8
URI strings and 615 URI fields do not have the API de-
scription, we manually define the corresponding private in-
formation and ”personal information“ which are used as the
object when generating the sentence. If query functions (e.g.
ContentResolver.query()) and URI strings(or URI fields) are
adopted together, we map the URI strings(or URI fields) to
the corresponding private information.

In order to find the used third party libraries and the
private information collected by them, we record the class
name of the statement which called sensitive APIs or used
selected content providers. If the class name is the same
as one third party library’s class name, we deem that the
third-party library collects the private information.

3.2.1 User consent analysis
Sometimes the private information is collected with user

consent (e.g., after clicking a button). To locate such execu-
tion conditions, we record the name of the method contain-
ing the statement that calls sensitive API.

In Android, there are different ways to intercept the events
from users. First is event listener, when the class View which
the listener has been registered to is triggered by the user,
the callback method contained in listener is called; second
is event handles, they are the callback methods used as de-
fault event handlers when developer builds a custom com-
ponent from View [1]. If the method name is the same as an
event listener’s callback method or an event handler’s call-
back method in View (Table 2) [1], we regard this behaviour
to be executed under users’ consent. Besides checking the
method that contains the statement, we also perform depth
first traversal in MCG (method call graph) and find all meth-
ods that call this method. If one of these methods exists in
Table 2, we also deem that this behaviour will ask for user
consent.

Some apps having privacy policies that notify users which
information can only be used with user consent. For ex-



Event listener for view class Event handler for view class
onClick() onKeyDown()

onLongClick() onKeyUp()
onFocusChange() onTrackballEvent()

onKey() onTouchEvent()
onTouch() onFocusChanged()

onCreateContextMenu()

Table 2: Callback functions for event listener and event
handler in view class

 protected void onCreate(Bundle savedInstanceState) {
  ...    
       this.otherCamera.setOnClickListener(new View$OnClickListener() {
            public void onClick(View v) {
                if(Camera.getNumberOfCameras() >= 2) {
                    CameraActivity.this.mCamera.release();
                    CameraActivity.this.mCamera = Camera.open(CameraActivity.currentCameraId);
                }
            }
        });
  ...
}

Figure 5: App io.avocado.android: Open camera only
when pressing button

ample, the location service app “com.zoemob.gpstrackin”’s
class com.zoemob.familysafety.ui.bg calls getLatitude() func-
tion to get user location information, and this invocation is
in an onClick() method. In its privacy policy, we find such a
sentence: “In the event of TWT DIGITAL offering a service
based on the sharing of location information, we will present
you with an optin for you to choose whether to participate”.

However, some apps do not declare such conditions. For
example, the social app io.avocado.android (Fig. 5) con-
tains an activity in which we can find a method onClick()
calling android.hardware.Camera.open(). This behaviour is
triggered by users. However, its privacy policy does not
mention this behaviour.

3.2.2 Information retention analysis
Some private information will be not only used but also

sent out through internet/SMS or saved to file/log. These
specified APIs through which data could send out are called
sink functions [32]. Such behaviour should be identified and
declared in privacy policies to notify users. To capture such
behaviour, we perform the depth first traversal from those
sensitive APIs to selected sink functions based on the data
dependency relation.

For example, in app com.abukai.expenses (shown in Fig.
6), we find that class com.abukai.expenses.Uti calls getLon-
gitude() and getLatitude() functions, and writes the results
to the file through FileOutputStream’s write() function. How-
ever, in its privacy policy, we cannot find any statement
mentioning the record of user’s location information.

public static void a(Context arg8, String arg9, String arg10, boolean arg11, boolean arg12) {
    ...           
                if(Util.d != null) {
                    v4 = Util.a(Util.d.getLongitude());
                    v3 = Util.a(Util.d.getLatitude());
                }
                Util.a(arg8, arg9, v2, v3, v4, arg10, arg11, arg12);
    ...
}
private static void a(Context arg3, String arg4, al arg5, String arg6, String arg7, String arg8, 
            boolean arg9, boolean arg10) {
    ...
        FileOutputStream v1 = new FileOutputStream(String.valueOf(Util.c(arg3, arg4)) + ".DAT");
        if(arg6.length() > 0) {
            v1.write(arg6.getBytes());
        }
        if(arg7.length() > 0) {
            v1.write(arg7.getBytes());
        }
    ...
}

Figure 6: com.abukai.expenses obtains the location infor-
mation and saves it into a file.

3.3 Selecting proper verbs
The verb is an important component of a sentence. Af-

ter finding an app’s behavior of collecting certain private
information, we select a proper verb for generating the cor-
responding sentence. Many verbs, such as use, collect, ac-
cess, read, get, take, share, retain, etc., can be used to de-
scribe the behaviours. To choose a proper verb, we take into
account both the app’s behaviours (Section 3.3.1) and the
verb’s popularity in privacy policies (Section 3.3.2).

3.3.1 Mapping behaviours to verbs
The static analysis module will provide the private infor-

mation to be sent out or written to a file and the private
information to be disclosed to a third-party library. They
should be mapped to specific verbs. We list three cases and
their candidate verbs.

Case 1: If the information collected by the app will be
disclosed to a third party library, we select the verbs related
to information disclosure, such as disclose, share, transfer,
send, transmit, transport, etc. Note that if the information
is sent out through internet, it may be saved in server and
shared with the business partner. In this situation, we also
select these verbs.

Case 2: If the information is retained in the file or log,
we select the verbs related to information retention, such as
store, save, maintain, retain, hold, keep, etc.

Case 3: If the information is neither disclosed to the third
party nor saved in the file, we select verbs that do not appear
in case 1 and case 2, such as collect, use, process, access, etc.

By analyzing the privacy policies of 500 apps fetched from
Google Play, we find out the verbs that have been often used
in privacy policies. Table 3 lists some candidate verbs for
different cases.

Private Info Case 1 Case 2 Case 3

location share retain use, collect, request
video disclose, share store use, take

device ID provide store use, access, collect
phone number provide record collect, use

site urls disclose log use, collect

Table 3: Private information and their corresponding verbs
in different cases

Grouping noun phrases Since different noun phrases
may point to the same object, we group them together to
find the related verbs. More precisely, we use ESA [17] to
compute the similarity between noun phrases extracted from
privacy policies with all private information extracted from
API descriptions. Currently, we set the threshold value to
0.5. If the semantic similarity between one noun phrase and
the private information is larger than the threshold, we re-
gard them as the same thing and combine their correspond-
ing verbs together.

Private information Synonyms

location country location, device location,
location detail, device geolocation, etc.

phone number phone number string, phone book,
verified phone number, cell phone number,

mobile phone contact list, etc.
ip ipv4, visitor ip address, commenter ip, etc.

Table 4: Private information and their synonyms



3.3.2 Selecting proper verbs for private information
Once the collected private information and the behaviour

case are decided, multiple candidate verbs can be used to
generate sentences. We propose a method to select the best
verb by analysing the privacy policy corpus in order to make
the generated sentences similar to manually written ones.

According to the Bayes rule, the co-occurrence probability
of the private information and the verb [41] is as follows:

P (Sent|n, v) =
P (n, v|Sent)P (Sent)

P (n, v)

=
P (n|Sent)P (v|Sent)P (Sent)

P (n)P (v)

(1)

In the above equation, n refers to the private information,
Sent denotes all sentences contained in privacy policies, and
v is the verb. This probability is proportional to P (n|Sent)∗
P (v|n) [41]. For each kind of private information (object, n),
we count the number of sentences that contain the related
noun phrases to calculate the possibility P (n|Sent). Then
we compute each verb’s appearance possibility P (v|n) in
these sentences. Finally, we select the verb which has the
highest co-occurs possibility as the best one.

3.4 Privacy policy generator
Sentence generation. In section 3.1, we map each API

to the corresponding private information n. We find the
collected private information and the collector of such pri-
vate information in section 3.2. And in section 3.3, the best
verb v of each private information n is found. Note that the
collector and the private information n serve as the subject
and the object of the generated sentence for privacy policy,
respectively.

The generated sentence adopts plain English [29], which
allows readers to get the message easily. Plain English has an
average sentence length of 15-20 words, and it prefers active
verbs. Therefore, we define the structure of each generated
sentence as:

sentence = subject verb object [condition]

This structure contains four parts.

• The subject of the sentence is the private information
collector. If it refers to a third-party library, we use
the library’s name as the subject; otherwise, we use
“We” as the subject of sentence.

• Object is the collected private information. This is
determined by the mapping from sensitive APIs to the
private information (Section 3.2).

• The verb gotten from privacy policy corpus is used as
the verb of the sentence.

• Condition is an optional element. If the API is trig-
gered by button clicking, we add “with your consent”
after the sentence; otherwise, this part is removed.

Additional Sentence. If an app does not collect or use
any personal information or third party libraries, we cannot
generate any sentence to describe its behaviour. In this case,
providing an empty privacy policy is improper and we need
to add the additional sentences according to the following
options: (1) If the app itself does not collect any personal
information, we add the sentence “We do not collect any of

your personal information” to the privacy policy; (2) If the
app does not use any third party libraries, we add the sen-
tence “We do not use any third-party libraries in this app”.
If third party-libraries can be found, we also add a sentence
“The following third party libraries are used:” before sen-
tences that related to these third party libraries.

3.5 Post-Process: Removing duplicate sentences
and rearranging sentences

The generated privacy policies may contain duplicate sen-
tences in random order. To improve the readability of these
privacy policies, we perform two additional process: remov-
ing duplicate sentences and changing sentences order.

Removing duplicate sentences. Duplicate sentences
refer to multiple sentences having the same meaning in one
privacy policy. It may appear due to two reasons: (1) Direct
duplicates. An app calls different APIs that get the same
kind of information. For example, there are three APIs,
including getAccounts(), getAccountsByType(), and getAc-
countsByTypeAndFeatures(), for obtaining the account in-
formation. If they appear in one app, AutoPPG may gener-
ate three sentences. (2) Hidden duplicates. The information
that one API gets can cover that obtained through another
API. For example, an app invokes both getLastKnownLo-
cation() and getLatitude(). The former function gets the
location information, while the latter obtains the latitude.
AutoPPG will generate two sentences for them. However,
since the location information is more general than the lat-
itude, we can combine the two sentences into one.

To remove duplicates in the first case, APIs requesting
the same kind of information should be grouped together.
When generating sentences, if multiple APIs in the same
group are called by the same collector, only one API is
used to generate the sentence. We also group those content
provider’s URI strings and URI fields to achieve the same
purpose.

To remove the duplicates in the second case, we build a
tree structure for personal information. Note that if the in-
formation on the parent node is collected, information col-
lected in its sub-tree can be covered. We use a personal
information ontology [18] [20] to build up such model. On-
tology is a formal representation of a body of knowledges
within a given domain [10]. The personal information on-
tology [18] covers all personal information of a person, and
all personal information is organized in hierarchy structure
(Fig. 7). We put all APIs and URI(fields) into correspond-
ing classes and properties in this ontology. For example,
getLastKnownLocation() is put into class node “location”,
and getLatitude() is put into property node“latitude”. Then
we perform a depth first search on the ontology, if one API
belonging to the parent node is called and another API be-
longing to the child node is also invoked, we remove the
sentences generated by the child node and add its private
information into the parent node’s sentence.

Rearranging sentences. After generating a number of
sentences, we rearrange them according to the importance
degree of the corresponding private information. In [16], Felt
et al. surveyed 3,115 smart-phone users and asked them to
rate how upset they can be if the given risks occurred. Ac-
cording to the “Upset Rate” for different kinds of risks, we
get a risk rank for different kinds of personal information
(Table 5). Based on this rank, we change the appearance
order of sentences before writing them to file. For the infor-
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Figure 7: Personal information ontology getting from
http://www.w3.org/TR/vcard-rdf/

mation (e.g., cookie) which does not appear in [16], we put
them at the end of the privacy.

# Private Information # Private Information

1 contact 7 audio
2 SMS 8 camera
3 call log 9 location
4 browser history 10 account
5 calendar 11 app list
6 device ID

Table 5: Private information risk rank list

Fig. 8 shows a sample privacy policy generated by Au-
toPPG. Note that, since we do not find any information that
is collected by app and disclosed to third-party libraries, all
sentences in Fig. 8 do not use verbs related to information
disclosure as their main verbs.

Figure 8: Example: The document AutoPPG generate

4. EXPERIMENT
We conduct extensive experiments to answer the following

research questions.

• RQ1-Correctness: How is the correctness of the doc-
ument analysis module? The purpose of this research

question is to check the correctness of AutoPPG’s doc-
ument analysis module.

• RQ2-Expressiveness: How is the expressiveness of
the generated privacy policies? In this part, we will
explore whether the generated privacy policies are easy
to read and understand for users.

• RQ3-Adequacy: Do the generated privacy policies
satisfy the requirement? For this research question, we
aim to verify whether the generated privacy policies
meet the requirements, especially in telling users all
collected private information.

In the following subsections, we first introduce the data set
and then detail the experimental results.

4.1 Data set
We download 7,181 apps from Google play, all of which

provide privacy policies. We randomly select 500 apps con-
taining privacy policies in English from them as our dataset.

Since some experiments, which require human interven-
tion, cannot been done in large scale, we randomly select 12
apps’ privacy policies for such experiments. They include
8 manually written and 4 template-based privacy policies.
The names of these apps are shown in Table 6.

4.2 Answer to RQ1: The correctness of the
document analysis module

The precision of mapping APIs to their collected
information. Instead of using the 79 APIs mentioned in
Section 3.1.1, we randomly select another 67 source func-
tions that collect certain information from Susi [32], because
we aim to evaluate the AutoPPG’s accuracy of mapping
APIs to their collected information through text analysis.
We use these APIs’ signatures and descriptions as the input
of our document analysis module and manually check the
output.

We found that only 3 out of 67 APIs have incorrect results.
For example, the description of the API Cursor.getColumn-
Names() is: “Returns a string array holding the names of
all of the columns in the result set in the order in which
they were listed in the result”. AutoPPG gets the object “a
string array” of the verb “Returns”, but misses “names of all
of the columns”. It is due to the fact that in the output of
Stanford parser “names of all of the columns” is not in the
subtree of object “a string array” and our algorithm only
searches attributes in the subtree of the object.

The precision of our document analysis module is com-
puted by the following formula:

precision =
True Positive

Total
= 95.5%,

where True Positive stands for the number of APIs that
document analysis module can correctly extract the related
information while Total means the total number of APIs
used in this experiment.

The effectiveness of duplicate sentences removal.
To illustrate the necessity of removing duplicate sentences,
we count the number of generated sentences in each app
before and after removing the duplicates. The result of CDF
is shown in Fig. 9. The blue curve is on the left of red curve,
meaning that many apps have been affected by removing
duplicate sentences.



Num App Num App
1 air.bftv.larryABCs 7 com.gamevil.spiritstones.global.free
2 air.com.arpamedia.candyprincessmakeover 8 com.godaddy.mobile.android
3 air.com.gamesys.mobile.slots.jpj 9 com.goodreads
4 air.com.kitchenscramble.goo 10 com.newzbid.newzapp
5 air.com.playtika.slotomania 11 com.roadwarrior.android
6 com.crimsonpine.stayinline 12 llc.auroraappdesign.votd

Table 6: The apps that we use for manual check

Without deduplication, AutoPPG generates 7,801 sen-
tences for 500 apps in total. After AutoPPG removes dupli-
cate sentences, only 6,039 sentences are left. In other words,
22.5% sentences have been eliminated.
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Figure 9: Number of sentences before and after removing
duplicate sentences

4.3 Answer to RQ2: The expressiveness of the
generated privacy policies

We measure the expressiveness of the generated privacy
policies from two aspects: readability and understandability.

We employ crowdsourcing to compare the readability and
understandability between privacy policies generated by Au-
toPPG and the existing ones. More precisely, we randomly
select 12 apps as examples, and put each app’s existing pri-
vacy policy and the generated one into the questionnaire.
Then, we publish these 12 questionnaires on Amazon Turk,
and ask workers in crowdsourcing to read them.

After reading a privacy policy, each worker will answer
two questions. Q1 is “Is this privacy policy easy to read?”.
This question is proposed to compare the readability of the
existing privacy policy and that of the generated privacy
policy. We provide four answers to choose, including “very
difficult”, “difficult”, “easy”, and “very easy”.

Q2 is: “Do you think whether an app with such behaviour
violates users’ privacy?” This question is proposed to eval-
uate which description is more understandable. We also
provide four answers to choose, including “Absolutely NO”,
”NO”, ”YES”, and “Absolutely YES”. Since apps’ existing
privacy policies contain some irrelevant information, we re-
move them and only reserve the sentences related to collect-
ing and using private information in the questionnaires.

After publishing them on Amazon Turk for 3 days, we
finally got 189 responses from 66 workers, and each privacy
policy has been read by at least 10 workers.

The distribution of all responses to Q1 is shown in Fig.
10. We can find that for the generated privacy policies,

the proportion of readers choosing “very easy” is larger than
that for the existing privacy policies, and the proportion
of readers selecting “very difficult” is less than that for the
existing privacy policies. Note that, although the number
of workers who select “easy” for the existing privacy policies
is larger than that for the generated privacy policies, more
workers select “very easy” for the generated privacy policies.

Fig. 11 shows the Q2’s answer distribution. We can see
that after reading generated privacy policies, most of work-
ers choose “YES” and “Absolutely YES”, indicating that the
generated privacy policies are more understandable that ex-
isting ones.
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Figure 10: Readability comparison between existing pri-
vacy policy and new generated privacy policy: Is this privacy
policy easy to read?
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Figure 11: Understandability comparison between existing
privacy policy and new generated privacy policy: Do you
think an app with such behaviour violate user privacy?

4.4 Answer to RQ3: the adequacy
If a developer uses many different APIs or various third-

party libraries, he or she may miss some information when



writing privacy policies manually. In contrast, AutoPPG
can achieve a low false negative rate because AutoPPG con-
ducts static code analysis. In this experiment, we use 12
randomly selected apps and compare the coverage of the
generated privacy policies on those collected private infor-
mation and that of the existing privacy policies.

Information selection. We select 9 kinds of private in-
formation, including location, account, video, audio, device
ID, IP address, app list, cookie, and phone number. We also
count the number of third-party libraries mentioned in the
privacy policies.

Table 7 shows the comparison result. We use“T”to repre-
sent template-based privacy policies , “N” to stand for new
generated policies, and “O” to indicate exist privacy pol-
icy files. From Table 7, we can see that the total number
of the generated privacy policies that contain any kind of
private information is larger than the number of existing
privacy policies that contain the corresponding information.
Moreover, the number of third-party libraries covered by the
generated privacy policies is also larger than that in existing
privacy policies.

As an example for app 7, the existing privacy policy only
tells users that social account and related information can
be used, while our generated privacy policy can inform users
that the application list, contacts, device ID, phone number,
and account will be used. Moreover, the app 7’s existing
privacy policy does not contain the names of third-party
libraries, while AutoPPG identifies and lists 7 third-party
libraries used by this app.

5. THREATS TO VALIDITY
In this paper, we develop a tool called AutoPPG to au-

tomatically construct correct and readable descriptions to
facilitate the generation of privacy policy for Android apps.
We list potential threats to validity in our work as follows.

Design target. Privacy policy is a complex document
and AutoPPG can only generate statements related to apps’
behaviours. Some other information, such as “how to con-
tact the developer” and “how can user ask the developer to
delete their personal information”, still needs the developers
to write by themselves. Static analysis can find an app’s
privacy-related behaviours in code, but it cannot discover
the purpose of these behaviours. Therefore, the purpose of
each behaviour needs to be added by developer after apply-
ing AutoPPG to the app.

System design. The static analysis module of our sys-
tem uses Epicc [28] to find the target of the intent. However,
advanced tools such as Iccta [22] can also be used to find
the communication between components. When discover-
ing third party libraries, more libraries’ class names can be
added to the white list to improve our system’s coverage.

When checking parameters of the query function of the
content provider, our system cannot handle the complex
string operations such as “append”, “split”. This issue may
lead to false negatives [37], and we will tackle it in future
work.

When finding the behaviours triggered by users, AutoPPG
only checks method names. This may cause false positives,
and additional check will be added in future work, such as
dynamic checking.

Experimental result. In our experiment, we selected 76
sensitive APIs, 8 URI strings, and 615 URI fields as sources.
In future work, more APIs will be examined.

When comparing the readability, we only selected 12 apps
as samples since removing useless sentences needs much man-
power and only 66 workers answered the questionnaires. We
will investigate more samples and involve more readers in fu-
ture work. Since Amazon Turk does not allow us to get the
personal information of workers, such as “location”, “age”,
we cannot show the demographic information.

6. RELATED WORK
AutoPPG performs static analysis on android apps to gen-

erate the privacy policies. In this section, we introduce some
related works on privacy policy, privacy policy generator,
and software artifacts generation.

6.1 Privacy policy
Since privacy policies are written in natural language,

some studies investigated how to parse privacy policies and
mine information from them. Breaux et al. [12] present a
methodology for directly extracting access rights and obli-
gations from the US Health Insurance Portability and Ac-
countability Act (HIPAA) Privacy Rule. To automate the
process, semantic patterns are employed to process the ac-
cess control policy [39] [38].

Some studies used machine learning techniques to analyse
the features of privacy policies. Costante et al. use machine
learning algorithm to analyse the completeness of privacy
policies [14]. Zimmeck et al. combine crowdsourcing and
machine learning technique to check essential policy terms
in privacy policies [42]. Liu et al. adopt HMM to perform
the automatic segment alignment for policies [23] [31].

All these works are based on existing privacy policies and
make no effort to actively generate new privacy policies.

6.2 Privacy policy generator
Although Privacy Informer [26] was proposed to automati-

cally generate privacy policies, it can only analyse the source
code of mobile apps created through App Inventor, but it
cannot generate privacy policies for normal apps due to the
lack of source code.

PAGE [35] is an Eclipse plug-in that enables developers to
create privacy policies during the developing process. How-
ever, PAGE is similar to those online privacy policy gener-
ators since it does not analyse apps’ source code and it re-
quires developers to answer a list of questions such as “What
type of data do you collect” and “Do you share data with
others”.

AppProfiler is another similar work [34]. It detects privacy-
related behaviors in apps and explains them to end users
[34]. However, AppProfiler is based on the manually cre-
ated knowledge base which maps the privacy-relevant APIs
to appropriate behaviours. Instead, AutoPPG can automat-
ically map APIs to their collected private information by
using information extraction techniques. Moreover, App-
Profiler can only identify system calls, method name, and
class name, but it cannot perform the data flow analysis
and cannot find which information will be retained.

6.3 Software artifact generation
Privacy policy is a category of software artifact, thus the

previous studies related to other software artifacts (e.g., test
case and test code) provide the inspiration for our work.
Rayadurgam et al. proposed a method to generate the
test cases according to structure coverage criteria. The de-



Info
APP 1 APP 2 APP 3 APP 4T APP 5 APP 6 APP 7 APP 8 APP 9 APP10T APP11T APP12T Total
N O N O N O N O N O N O N O N O N O N O N O N O N O

Device ID ∗ ∗ ∗ o ∗ o ∗ ∗ o ∗ 7 3
IP address ∗ ∗ ∗ o o ∗ 4 2
location ∗ o ∗ ∗ ∗ ∗ o ∗ o ∗ o 7 4
account ∗ ∗ ∗ o o ∗ o ∗ 5 3

video/camera ∗ o ∗ ∗ ∗ ∗ ∗ 6 1
audio ∗ o ∗ ∗ ∗ ∗ 5 1

app list ∗ ∗ ∗ ∗ ∗ ∗ 6 0
cookie ∗ o o o o o ∗ o ∗ o o o 2 9

phone number o ∗ 1 1
Used Lib Num 0 0 3 2 4 0 7 1 3 0 3 3 7 0 0 0 1 0 0 0 1 1 4 4 33 11

Table 7: Comparison result of coverage of generated privacy policies and existing privacy policies: “N” means new generated,
“O” means exist old privacy policy, T means template-based privacy policy

signed model checker can produce complete test sequences
that provide a pre-defined coverage of any software arti-
fact [33]. Javed et al. proposed a new method to gen-
erate the test cases automatically. This method used the
model transformation technique to generate these test cases
from a platform-independent model of the system [21]. Har-
man et al. proposed a mutation-based test data genera-
tion approach that combines dynamic symbolic execution
and search-based software testing. This hybrid generation
method gets the better performance than state-of-the-art
mutation-based test data generation approaches [19]. Matthew
et al. proposed a tool to generate test code in model-driven
systems. Moreover, they quantified the cost of the test code
generation versus application code and found that the arti-
fact templates for producing test code are simpler than those
used for application code [36].

7. CONCLUSION
We propose and develop a novel system named AutoPPG

to automatically construct correct and readable descriptions
to facilitate the generation of privacy policy for Android ap-
plications (i.e., apps). AutoPPG can identify the private in-
formation collected or used by an API from its description,
name, and the class name. It can also discover an app’s
behaviors related to users’ private information by conduct-
ing static code analysis, and generate correct and accessible
sentences for describing these behaviors. The experimental
results using real apps and crowdsourcing demonstrate the
correctness of AutoPPG’s document analysis module, the
expressiveness, and the adequacy of the generated privacy
policies. In future work, we will further improve the perfor-
mance of the document analysis module and the static code
analysis module. Moreover, we plan to examine more apps
and involve more persons in the evaluation of AutoPPG.
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