
Is What You Measure What You Expect? Factors Affecting
Smartphone-Based Mobile Network Measurement

Lei Xue∗, Xiaobo Ma†∗, Xiapu Luo∗§, Le Yu∗, Shuai Wang∗, Ting Chen‡∗
∗Department of Computing, The Hong Kong Polytechnic University

†MOE KLINNS Lab, Xi’an Jiaotong University
‡Cybersecurity Research Center, University of Electronic Science and Technology of China

∗{cslxue,csxluo,cslyu,csswang}@comp.polyu.edu.hk, †xma.cs@xjtu.edu.cn, ‡brokendragon@uestc.edu.cn

Abstract—Many apps have been developed to measure the per-
formance of mobile networks. Unfortunately, their measurement
results may not be what users expect, because the results could
be biased by various factors and the apps’ descriptions may
confuse users. Although a few recent studies pointed out several
factors, they missed other important factors and lacked of fine-
grained analysis on the factors and measurement apps. Moreover,
none has studied whether or not the descriptions of such apps
will mislead users. In this paper, we conduct the first systematic
study of the factors that could bias the result from measurement
apps and their descriptions. We identify new factors, revisit
known factors, and propose a novel approach with new tools to
discover these factors in proprietary apps. We also develop a new
measurement app named MobiScope for demonstrating how to
mitigate the negative effects of these factors. Furthermore, we
construct enhanced descriptions for measurement apps to provide
users more information about what is measured. The extensive
experimental results illustrate the negative effects of various
factors, the improvement in performance measurement brought
by MobiScope, and the clarity of the enhanced descriptions.

I. INTRODUCTION

The widespread adoption of smartphone and the prosperity
of mobile apps demand stable and high-speed mobile network-
s. Hence, how to measure the performance of mobile network
has recently attracted a lot of attention from governments,
academia, and industry [1], [2]. Many measurement apps have
been developed and published in Google Play or Apple Store
[3]. Unfortunately, the measurement results from apps may not
be what users expect because of two reasons.

First, various factors could affect the measurement results,
and not all app developers are network measurement experts
being aware of such factors. For example, according to RFC
2681 [4], the round-trip time (RTT) reported by an app is
determined by the host times, which include the timestamp
just prior to sending the packet and that right after receiving
the response packet. In contrast, the network RTT is calculated
using the wire times, which refer to the time when the
packet leaves the smartphone’s network interface (NIC) and
the time when the corresponding response packet arrives at
the smartphone’s NIC. It has been shown that the difference
between host times and wire times is not ignorable [5].

Second, users could misunderstand the results from the
mobile measurement apps because their descriptions may be
ambiguous. For example, although many apps claim to be able

§ The corresponding author.

to measure RTT, they refer to different time intervals, such as,
RTTs derived from host times/wire times, time-to-first-byte
with/without DNS resolution.

Although a few recent studies pointed out some factors (e.g.,
Dalvik virtual machine) that may affect the measurement [5]–
[7], they have several limitations, such as, missing other impor-
tant factors (e.g., implementation patterns), conducting only
coarse-grained analysis, and lack of evaluating off-the-shelf
measurement apps. Please refer to Section VII for detailed
differences between previous studies and our investigation.
Moreover, none has studied whether or not the descriptions
of measurement apps will mislead users.

In this paper, we conduct the first systematic study of the
factors that could bias the result from measurement apps and
their descriptions. It is non-trivial to accomplish this study
because the measurement process involves intricate factors
from apps, OS, and network protocols. Moreover, it is difficult
and time-consuming to understand how an app performs the
measurement, not to mention that most apps are proprietary.

We examine Android system, apps, and network protocols
to identify new factors and revisit known factors (Sec. II), and
perform extensive experiments to quantify their effect (Sec. V).
Android system is selected because it has occupied more than
81% market share [8]. To discover these factors in measure-
ment apps, we develop two tools, namely AppDissector,
a static bytecode analyzer, and AppTracer, a dynamic trace
analyzer (Sec. III). We also design MobiScope, a measure-
ment app for demonstrating how to mitigate the negative
effects of various factors (Sec. IV).

Furthermore, we construct enhanced descriptions for mea-
surement apps to provide users more information about what
is measured by leveraging the static and dynamic analysis of
measurement apps. User studies have been performed to assess
whether the original and the enhanced descriptions make users
understand what the apps measure (Sec. VI).

Our major contributions are summarized as follows:

(1) We conduct the first systematic study of the factors that
could bias the result from measurement apps by identify-
ing new factors, revisiting known factors, and quantifying
the negative effects through extensive experiments.

(2) We propose a novel approach combining static bytecode
analysis and dynamic trace analysis, and develop practical
tools to facilitate discovering these factors in apps.

(3) We develop MobiScope, a new measurement app that978-1-4673-7113-1/15/$31.00 ©2017 IEEE

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE

adopts various techniques to mitigate those factors’ nega-
tive effects. It will be released after the paper is published.

(4) We perform the first examination on the clarity of
measurement apps’ descriptions, and construct enhanced
descriptions to inform users what is measured.

Roadmap. Sec. II elaborates the classes of factors. Sec. III
details AppDissector and AppTracer for inspecting the
factors. Sec. IV describes MobiScope. We present experi-
ments in Sec. V, and report user studies in Sec. VI. After
introducing related work in Sec. VII, we conclude in Sec. VIII.

II. FACTORS AFFECTING MEASUREMENT RESULTS

We classify the factors that could bias the measurement
into three categories, namely implementation patterns (Sec.
II-A), Android architecture and configurations (Sec. II-B),
and network protocols (Sec. II-C). We identify new factors
in category 1 and 2, including implementation patterns for
HTTP/TCP based measurement, monitoring and power man-
agement mechanisms in Android. Moreover, we revisit known
factors, including multiple-layer nature of Android in category
2 and mobile and WiFi protocols in category 3. More precisely,
in contrast to previous study [5], we conduct a fine-grained
analysis on the effect of each layer and examine the new
Android runtime. For category 3, we examine the protocols’
effect on the measurement result and suggest solutions.

We use the process of RTT measurement, one primitive
measurement task [4], to explain the effect of various factors.
These factors have similar effect on the capacity and through-
put measurement, because they will introduce non-negligible
time gap to back-to-back packets used for measuring these
metrics [9]. Note that although the effect of some factors
could be mitigated using statistical algorithms (e.g., outlier
detection), eliminating the effect of other factors requires app
re-design or modification (e.g., those in Sec. II-A).

Runtime Layer

Native Layer

Kernel Layer

NIC Layer

DNS Server Remote Web Server

DNS
Lookup

DNS
Request

DNS
Response

TCP three-way
Handshake

t0 t1 t2 t3

SYN SYN/
ACK ACK

t4 t5

Send HTTP request1

t2_S

t2_K

t2_N

t3_S

t3_K

t3_N

t4_S

t4_K

t4_N

t5_S

t5_K

t5_N

Receive HTTP
response 1

HTTP
request

Prepare

HTTP
response

Sm
artphone

HTTP
request 1

t0_S

t0_K

t0_N

t1_S

t1_K

t1_N

Fig. 1. An example of RTT measurement conducted on an Android smart-
phone. We use dash-dot line to connect t2 and t2 k because the TCP SYN
packet is sent by the kernel but triggered by the function at the runtime layer.
Similarly, the dash-dot line connecting t3 k and t3 indicates that the TCP
SYN/ACK packet is received by the kernel without forwarding to the runtime
layer but the system will notify the function at that layer.

Fig.1 shows the measurement process with three stages,
namely, (1) DNS lookup; (2) TCP three-way handshaking; and
(3) preparing and sending HTTP request 1 to a remote web
server, and receiving HTTP response 1. Fig. 1 also depicts the
multiple layers of Android, including runtime, system (i.e.,
the user space of Android’s customized Linux), kernel, and
network interface (NIC). In Fig. 1, ti denotes the timestamp
obtained at the runtime layer. ti S , ti K , and ti N (i=0. . . 9)
represent the timestamps recorded at system/kernel/NIC layer,

respectively. According to RFC2681, ti, ti S , and ti K are
host times, referring to the timestamps acquired right before
sending a request and those obtained just after receiving the
response at different layers. ti N is the wire time, including
the time when a packet leaves the NIC and the time when the
response packet arrives at the NIC.

A. Category 1: Implementation Patterns
Although various apps claim measuring the same metric

(e.g., RTT), they may adopt different implementation patterns
that lead to different results. We summarize common patterns
used by apps for measuring RTT in Fig.2. Generally, an app
first obtains a timestamp (i.e., tStart), and then performs
the measurement. Finally, it records another timestamp (i.e.,
tEnd) and computes RTT as tEnd−tStart. Note that we only
examine HTTP (or TCP) based RTT measurement, because
most measurement apps support them and it is easy for users
to find a web server for measurement, not to mention that
HTTP is widely used by various apps [10].
HTTP-based RTT measurement: H-P1 measures t3 − t0 if
resolving the destination’s IP is required. Otherwise, it outputs
t3 − t2. More precisely, after tStart is gained, an instance
of URLConnection is created through openConnection()
in the class java.net.URL. Then, connect() in the class
java.net.HttpURLConnection is called before getting
tEnd. Note that the Java method connect() calls the native
method getaddrinfo() to perform DNS lookup, and then in-
vokes the native method connect() to create a TCP connection.
H-P2 measures t5 − t0 if IP resolving is needed. Oth-
erwise, it estimates t5 − t2. Specifically, between get-
ting tStart and tEnd, it employs execute() in the class
org.apache.http.client.HttpClient to send an
HTTP HEAD request and receive the corresponding HTTP
response. Note that before sending an HTTP request and re-
ceiving the HTTP response, execute() calls the native methods
getaddrinfo() and connect() to establish a TCP connection.
H-P3 measures t5 − t2 using methods in the class
java.net.Socket. The whole process includes estab-
lishing the TCP connection, constructing an HTTP request,
sending the HTTP request, receiving the HTTP response, and
parsing the HTTP response.
H-P4 estimates t5 − t4, which is the correct network RTT
measured by HTTP. To minimize the difference between host
time and wire time [4], tStart is captured just before sending
the request encapsulated in one packet, and tEnd is recorded
right after receiving the first packet of the response.
TCP-based RTT measurement: T-P1 measures t3 − t0 if
IP resolving is required. Otherwise, it yields t3 − t2 or
a much larger value depending on the implementation of
isReachable(). More precisely, after using getByName() in the
class java.net.InetAddress to resolve the IP, it invokes
isReachable() in the same class for checking whether the desti-
nation is reachable. According to official documentation [11],
isReachable() first uses ICMP to test the reachability, and
returns to TCP (i.e., exploit TCP three-way handshaking for
RTT measurement) if ICMP method fails. Therefore, if ICMP
packets are dropped by a router, which is common in today’s
Internet, the measured value would be much larger than the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Start

tStart=get current time

tEnd=get current time

URL.openConnection()

End

rtt=tEnd-tStart

HttpURLConnection.connect()

H-P1: Start

tStart=get current time

tEnd=get current time

HttpClient.execute()

End

rtt=tEnd-tStart

H-P2: Start

tStart=get current time

tEnd=get current time

Create socket & connect to server

End

rtt=tEnd-tStart

Send request & Receive reponse

H-P3: Start

tStart=get current time

tEnd=get current time

Create socket & connect to server

End

rtt=tEnd-tStart

Send request & Receive reponse

H-P4:

(a) HTTP ping.

Start

tStart=get current time

tEnd=get current time

InetAddress.getByName()

rtt=tEnd-tStart

InetAddress.isReachable()

T-P1:

End

Start

tStart=get current time

tEnd=get current time

New InetSocketAddress()

rtt=tEnd-tStart

connect()

T-P2:

End

Start

tStart=get current time

tEnd=get current time

rtt=tEnd-tStart

connect()

T-P3:

End

New InetSocketAddress()

(b) TCP ping
Fig. 2. Implementation patterns for HTTP-based and TCP-based RTT measurement.

real RTT. Although we find that the current implementation
of isReachable() does not realize the ICMP-based probing, it
is not recommended to use this method for measuring RTT in
case the ICMP-based probing is realized in future version.

T-P2 invokes two Java methods: InetSocketAddress() in the
class java.net.InetSocketAddress and connect() in
the class java.net.Socket. Since the former method will
conduct DNS lookup, T-P2 measures t3− t0 if IP resolving is
needed. Otherwise, it outputs t3 − t2. To accurately measure
network RTT, we suggest recording tStart and tEnd right
before and after invoking connect() to avoid the additional
delay due to DNS lookup, as shown in T-P3 in Fig.2(b).

B. Category 2: Android Architecture and Configurations

Multiple-layer nature of Android. Since apps run within the
runtime, which is a Linux process, packets sent from apps
would be delayed at all layers. Since Android 5.0, the default
runtime is changed from the Dalvik virtual machine (DVM) to
the new Android runtime (ART) for better performance [12].
In particular, apps will be compiled into native code before
execution. Note that 51.6% Android devices are still using
DVM [13]. Although Li et al. found that DVM may introduce
considerable delay [5], they neither conduct fine-grained anal-
ysis on the delay caused by different layers nor study ART.

Monitoring mechanisms. Several monitoring mechanisms
can be used in Android for monitoring packets. libpcap
captures packets in the kernel through BPF filter. Netfilter
allows users to register packet handlers and enables iptables to
inspect packets that match pre-specified rules. Using iptables,
VpnService [14] allows apps to redirect traffic to a tunnel.
It has been employed to capture packets and conduct mea-
surement [15]. All these mechanisms will introduce additional
delay if they inspect the measurement packets.

Power management. Android has an aggressive power man-
agement strategy but provides a mechanism called wake lock-
s [16] that empowers apps to keep the device awake. These
mechanisms have an indirect impact on measurement results
because they affect the parameters of PSM (Power Save Mode)
adopted by WiFi interface, which introduces additional delay.

C. Category 3: Network Protocols

The effect of network protocols on measurement is mainly
due to their state transitions, because previous studies reveal
that the state transitions will introduce noticeable delays [6],
[17], [18]. We revisit these factors because to what extent it
may bias the measurement result remains unknown.

Cellular Network. The RRC (Radio Resource Control) pro-
tocol of cellular networks influences power consumption and
network performance [6], [17]. Typically, 3G has three main
RRC states (i.e., IDLE, FACH and DCH), while LTE has
two main states (IDLE and CONNECTED). Typically, pack-
ets transmitted by cellular interface in the DCH (3G) or
CONNECTED (LTE) state experience shortest delay. Therefore,
when the cellular interface is in the states other than DCH or
CONNECTED, RTT measurement will suffer from additional
delays due to the state transition.

WiFi Network. PSM allows WiFi interfaces to sleep for an
integer number of beacon intervals (i.e., ListenInterval), and
then wake up to detect the presence of its buffered frames
in the access point (AP) [7]. If no frames are detected, the
interface continues to sleep for ListenInterval beacon intervals.
Otherwise, it wakes up to retrieve the buffered frames one by
one. When none of the buffered frames are left, the WiFi
interface goes back to sleep again. Pyles et al. found that
different PSM algorithms lead to different delays [18].

III. IS AN APP AFFECTED BY THESE FACTORS?

We combine static bytecode analysis and dynamic trace
analysis to inspect whether an app uses any implementation
pattern in Fig. 2, and whether it adopts any approaches to
mitigate the negative effect of the factors described in Sec. II.
We further develop two tools (i.e., AppDissector and
AppTracer) to facilitate this inspection. Given a measure-
ment app, AppDissector locates its measurement code
and checks: (C1) whether it uses native code to perform the
measurement for avoiding the effect of runtime; (C2) whether
it employs VpnService to handle packets; (C3) whether it
requests wake lock and Wi-Fi lock to mitigate the effect of
power saving mechanisms. AppTracer collects information
of method calls in Android framework, system libraries, and
system calls to construct the cross-layer method call graph and
determine whether the app uses libpcap or iptables.

A. Static Bytecode Analysis

Pre-processing. Given an app, AppDissector uses
VulHunter [19] to its abstract syntax trees(AST), inter-
procedure control flow graph(ICFG), method call graph, and
system dependency graph, and utilizes IccTA [20] to find
the target of each intent because an app’s components can
communicate through intents.

Then, we look for the entry of the measurement process. If
the entry is a UI component, we locate its callback functions

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

 1 long v20;
 2 Socket v48;
 3 v20 = System.currentTimeMillis();
 ...
 4 v48 = v55.createSocket();
 5 v48.connect(v29, (HTTPing.timeout * 1000));
 6 v28 = v48.getInputStream();
 7 v40 = v48.getOutputStream();
 ...
 8 v40.write(v23.getBytes());
 9 byte[] v5 = new byte[128];
10 int v38 = v28.read(v5);
 ...
11 double v64=(System.currentTimeMillis()-v20)/1000;
12 this.sendMessage("text","Run-time:"+v64+"s");

Data dependency
Control flow

(a) Static bytecode analysis.

 ...
 5 Invoke Socket:connect()
 Invoke Posix:socket()
 Return Posix:socket()
 Invoke Posix:bind()
 Return Posix:bind()
 Invoke Posix:connect()
 Return Posix:connect()
 5 Return Socket:connect()
 ...
 8 Invoke PlainSocketOutputStream:write()
 Invoke Posix:sendtoBytes()
 Return Posix:sendtoBytes()
 8 Return PlainSocketOutputStream:write()
 ...
10 Invoke PlainSocketInputStream:read()
 Invoke Posix:recvfromBytes()
 Return Posix:recvfromBytes()
10 Return PlainSocketInputStream:read()
 ...

(b) Dynamic trace analysis.
Fig. 3. A snippet of the static and dynamic analysis results of HTTPing.

from two sources, because they may start the measurement
process. First, we parse the layout file to find the callback
functions because they can be set in it. Second, since an app
can get a UI component in code and register event listeners,
we first obtain the UI component’s ID and then enumerate all
statements using this ID as parameters. After that, we search
the AST of each event listener to locate the callback functions.
Locating measurement code. The measurement code in-
cludes the measurement result related code for deriving the re-
sult and the measurement procedure related code for conduct-
ing the measurement. We first look for the former by locating
the variables/fields representing the measurement results and
then performing backward slicing and chopping [21]. More
precisely, we conduct backward slicing to identify the state-
ments that influence the computation of measurement results.
We perform the depth-first traversal from the statement that
gets the measurement results following the data dependency
relation. The traversal stops at local declaration statement
because it defines a new variable without depending on other
statements. All statements on the paths are saved in W . Then,
we perform chopping to identify the statements that use the
variables defined in W . For each statement in W , we check
the variable defined in it. If the variable is used by another
statement s, we add s into W . Finally, all statements in W
are regarded as the measurement result related code.

After that, we leverage the statements in W to look for
the measurement procedure related code. More precisely, we
locate the first and the last statements without considering local
declaration statements, and then traverse the control flow graph
to find the paths between them. All statements on the paths
are saved in W ′. We output the statements in W and W ′,
and regard the statements that are not included in W as the
measurement procedure related code.

We use HTTPing, whose snippet is shown in Fig.3(a),
as an example to illustrate the procedure. In HTTPing, the
measurement result v64 is calculated at line 11. To know how
this result is generated, we add line 11 into W and perform
backward slicing from it. The depth-first traversal stops at the
local declaration statement (i.e., line 1). We also add lines 1
and 3 to W . To know how the measurement result is used,
we perform chopping on each statement in W . As v64 used
in line 12 (i.e., show user the measurement result), we add
line 12 into W . Finally, W contains lines 1, 3, 11, 12. We
regard them as the measurement result related code. Then, we
traverse from line 3. The traversal stops at line 12. Lines 3-12
are put in W ′. Since lines 4-10 are not included in W , we

regard them as the measurement procedure related code.

C1: We traverse the ICFG from the entry of the measurement
process to identify statements invoking native methods that
affect the measurement results. If found, we use dynamic
trace analysis to confirm whether the native methods perform
the measurement or not, because our static bytecode analysis
module currently cannot handle native codes.

C2: We check whether the app requests the permission
BIND_VPN_SERVICE in AndroidManifest.xml and
invokes android.net.VpnService.establish() to create a VPN
interface. If so, the app uses VpnService.

C3: An app can keep the screen on by calling Win-
dow.addFlags() with FLAG_KEEP_SCREEN_ON or setting
the attribute android:keepScreenOn to “true” in the
layout file. We look for them by inspecting the ASTs and
the layout file. To lock the Wi-Fi, the app must request
WAKE_LOCK permission and invoke WifiLock.acquire(). We
discover it by parsing the manifest file and checking the ASTs.

B. AppTracer: Dynamic Trace Analysis

It is non-trivial to design a tool running in smartphone
to collect information about method calls across layers.
We accomplish it by developing AppTracer based on
valgrind [22], whose architecture is shown in Fig.4. The
tracers trace method invocations and returns at the correspond-
ing layers, and the trace analyzer generates the control flow
information based on the logs generated by the tracers.

DVM Runtime Tracer. The information of each invoked
DVM function can be collected from dvmMethodTraceAdd() if
Android’s profiling framework is enabled [23]. Therefore, the
DVM runtime tracer wraps this function for tracing functions
at the DVM layer. When a measurement app is launched,
we enable Android’s profiling framework, and then the DVM
runtime tracer collects the information of method invocation
and return in the wrapper function of dvmMethodTraceAdd().
ART Runtime Tracer. AppTracer supports ART. Since the
functions Trace::MethodEntered() and Trace::MethodExited()
are called when each method is invoked and returned, respec-
tively, the ART runtime tracer obtains the entering and exiting
events of the involved methods by wrapping both functions in
libart.so and enabling Android’s profiling framework.

Applications

Application Framework

System
Layer

Linux Kernel

System
Libraries

System Calls

DVM/ART
Runtime
Tracer

System
Tracer

Kernel
Tracer

JNI

Trace Analyzer

Third-party
Libraries

AppTracer

DVM/ART

Runtime

Fig. 4. Architecture of AppTracer

System Tracer. It collects information about system library
functions and system calls. By using valgrind to get the
instruction level information and the addresses of all functions
in loaded libraries, it obtains the function invocation and return
information by matching function addresses and the target
addresses of jump instructions. Since valgrind can obtain

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

TABLE I
THE IMPLEMENTATION PATTERNS OF 10 MEASUREMENT APPS UNDER EXAMINATION. PING REFERS TO USING THE DEFAULT PING TOOL IN ANDROID.

App Fing2 MobiPerf2 Netalyzr WiFi Speed Test1 Internet Speed Test1 Ping&DNS1,2 PingTools he.net HTTPing Httping Tool

Implementation ping H-P1, T-P1, ping T-P2 T-P1 T-P2 T-P2, ping H-P2, T-P2, ping ping H-P3 T-P33

1 WiFi Speed Test and Ping&DNS provide option to prevent screen off; Internet Speed Test keeps screen on during the measurement process.
2 Fing, MobiPerf and Ping&DNS acquire the WAKE LOCK permission in their AndroidManifest.xml file.
3 Its implementation is similar to the pattern T-P3 with difference that it sends HTTP request before getting tEnd.

the number of each system call when it is invoked and returns,
we maintain the relationship between the number and the name
of each system call to identify all system calls involved.
Kernel Tracer. It utilizes the function graph tracer of ftrace
to record the flow of every function call in the kernel and
then constructs the function call graph according to the traces
generated by the function graph tracer.
Trace Analyzer. It constructs the cross-layer control flow by
exploiting the order of entering and existing a function, which
are recorded by tracers at different layers. For example, Fig.5
shows the tracing results generated by AppTracer. Since
these functions are not executed in parallel, we reconstruct the
cross-layer dynamic control flow as shown in the sub-figure
on the right side of Fig.5 according to the entering and exiting
orders of all invoked functions at different layers.

Enter R DatagramSocket.send()

Enter S sendto()

Enter K sys_sendto()

Enter K dev_hart_start_xmit()

Exit K dev_hart_start_xmit()

Exit K sys_sendto()

Exit S sendto()

Exit R DatagramSocket.send()

Action Function

DatagramSocket.send() {
 ...
 sendto() {
 ...
 sys_sendto(){
 ...
 dev_hart_start_xmit()
 ...
 }
 }
}

Tracing retult Invocation relationship

R: Runtime S: System K: Kernel N: NIC

Type

TN
TK

TS
TR

Fig. 5. Example of reconstructing invocation relationship from tracing result.

With the cross-layer control flow, we further correlate
it to the result of static analysis. For example, from the
dynamic analysis results of HTTPing shown in Fig.3(b),
we can match Java methods in Fig.3(a) to JNI functions in
libcore_io_Posix.cpp. Therefore, by combining the
results of static and dynamic analysis, we can learn that
the RTT measured by HTTPing includes constructing TCP
connection, sending HTTP request, receiving HTTP response.
In other words, it follows the H-P3 pattern in Fig.2.

To check whether an app uses iptables, AppTracer calls
“iptables -L” to list all Netfilter rules. Since libpcap captures
packets through PF_PACKET socket, AppTracer hooks the
function socket() to monitor whether PF_PACKET socket is
created. If so, AppTracer checks whether the socket is used
for receiving packets. Based on the result, AppTracer knows
whether the app uses libpcap to capture packets.

IV. MOBISCOPE

We develop MobiScope to demonstrate how to mitigate
the effects of the factors in Section II. To mitigate the effect
of multiple layers (i.e., shorten the difference between host
time and wire time [4]), MobiScope’s two major modules
(i.e., kping and kband) are realized in kernel. Although
installing kernel modules requires root privilege, we develop
them for users requiring highly accurate measurement results.

Using ICMP packets to measure RTT, kping first con-
structs an echo request packet in kernel and stores it in the
structure sk buff, and then sends it out by calling kernel
function dev hard start xmit(), which is the entry of device

driver [24]. It uses ktime get ts() to obtain the sending times-
tamp with nanosecond resolution. kping registers a Netfilter
function to receive echo reply packet. Before the measurement,
kping calls the function net enable timestamp() to enable
sk buff timestamping so that each packet’s arriving timestamp
will be stored in the field tstamp of structure sk buff by
the NIC driver. To measure capacity or throughput, kband
sends packet trains through dev hard start xmit() and receives
packets through another registered Netfilter function. It records
the timestamps by calling ktime get ts().

Although MobiScope uses Netfilter, we minimize its
impact on the measurement by taking two measures. First,
invoking functions in the device driver to send packets for
excluding the impact of Netfilter. Second, manipulating the
Netfilter chains to register the packet receiving function at the
first position for mitigating the impact of other Netfilter rules.

To mitigate the effect of power management and NIC state
transition, MobiScope acquires WakeLock and WifiLock
to keep the device and WiFi radio awake, respectively. It
also sends several packets before starting the measurement to
assure that the WiFi state or the RRC state is at the awake
state and the DCH(3G)/CONNECTED(LTE) state, individually.

MobiScope also includes modules that realize patterns
H-P4 and T-P3 for conducting HTTP and TCP based RTT
measurement at system layer.

USB or WiFi

Cable

eth0
Smartphone

Host (AP)
Web Server
(Apache)

wlan0/usb0
Switche

Monitor
Fig. 6. The testbed.

V. EXPERIMENTS

A. Testbed

As shown in Fig.6, the smartphone communicates with an
Apache2 web server via a host. The host offers the smartphone
two access methods, namely, USB tethering and WiFi (i.e., an
AP), and it uses Linux traffic control (TC) and netem to
emulate various capacity and additional delay. USB tethering
offers stable wired connection with very low latency. In con-
trast, WiFi channel may have variable and large delay due to
contention and signal variance. Hence, when examining factors
except WiFi state transitions, we connect the smartphone to the
host via USB tethering to avoid unexpected noise. Otherwise,
we use WiFi access. Besides collecting timestamps in Android,
we also record the timing information of packet transmissions
at all possible vantage points in the testbed.

We have two smartphones: Samsung S3 with Exynos 4412
Quad and Murata M2322007 WiFi module, and LG Nexus 5
with Qualcomm MSM8974 Snapdragon 800 and Broadcom
BCM4339 WiFi module. The LG Nexus 5 runs either official

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Android 4.4 or Android 6.0 for DVM or ART. The Samsung
S3 runs CM-11.0 (based on Android 4.4) or CM-13.0 (based
on Android 6.0), because AOSP builds only support Nexus de-
vices. The apps under investigation including Fing, MobiPerf,
Netalyzr, WiFi Speed Test, Internet Speed Test, Ping&DNS,
PingTools, he.net, HTTPing, and Httping Tool. These tools
can be found at [3]. Their implementation patterns identified
by our analysis are summarized in Table I.

B. Effect of Factors in Category 1

HTTPing v1.4

PingTools v2.89

Httping Tool v1.0
MobiScope

100

150

200

250

TCP Ping

H
TT

P
Pi

ng
R

es
ul

ts
(m

s)

HTTP Ping
Ping&DNS v2.6.7

PingTools v2.89

WiFi-Speed Test v1.0
MobiScope90

95

100

105

110

115

120

TC
P

Pi
ng

R
es

ul
ts

(m
s)

Fig. 7. HTTP/TCP-based RTT measurement by different ping apps.

In this experiment, we add 100ms delay to the USB
connection between the smartphone and the host. Then we
run the measurement applications sequentially and repeat for
50 times. Thus each app returns 50 measurement results for
comparison. The left subfigure of Fig.7 shows the results of
HTTP ping from HTTPing, PingToos, Httping Tool,
and MobiScope. The right subfigure of Fig.7 illustrates
the results of TCP ping from Ping&DNS, PingTools,
WiFi-Speed Test, and MobiScope. Since all apps use
the default ping to conduct ICMP ping, we compare it and
MoboScope in Section V-E.

For HTTP ping, the results from HTTPing and
PingTools are around twice of the real RTT. It is be-
cause HTTPing and PingTools use the patterns H-P2
and H-P3 respectively. Hence, their results include the time
for establishing TCP connection and the time for sending
request and receiving response. Although Httping tool
claims using HTTP request and response to measure RTT, its
implementation is similar to pattern T-P3 except that it sends
HTTP request before getting tEnd. Therefore, its result is
similar to that from MobiScope but has larger variance.

For TCP ping, Ping&DNS and PingTools adopt patten
T-P2 and WiFi Speed Test follows pattern T-P1. Their
results are similar to that from MobiScope. The reason is
we use the web server’s IP address instead of domain name so
that apps do not need to perform DNS lookup. In other words,
they measure t3− t2 in Fig.1. And this is also the reason why
HTTPing and PingTools get the similar results.
Summary. Implementation patterns may obviously bias the
measurement result. Developers had better describe the im-
plementation patterns of apps to avoid confusing the users.

C. Effect of Factors in Category 2

Measuring the delays at different layers. To profile the time
for delivering a packet across different layers, we construct the
cross-layer method call graph using AppTracer, and then
select methods as the entries of different layers. Note that we
use the execution time of an entry function to approximate the
time used to deliver a packet at the corresponding layer.

To minimize the noise due to timestamp acquiring functions,
we get the timestamps used for profiling a Java method
from the system layer instead of the runtime layer. More
precisely, given a Java method, we obtain the timestamps right
before and after its execution by modifying dvmInterpret() (in
libdvm.so) and ArtMethod.Invoke() (in libart.so) for
DVM and ART, respectively. Moreover, we invoke the Java
method through Java reflection so that this method will be
called and returned in dvmInterpret() or ArtMethod.Invoke(),
individually. Then, at runtime and system layer, we acquire
timestamps through gettimeofday(). At kernel and device layer,
we get them through kernel function ktime get ts().
Delay due to Android Architecture. To profile the time
consumed for delivering a UDP packet across different lay-
ers, we select DatagramSocket.send(), sendto(), sys sendto()
and dev hard start xmit() as the entries of runtime/system/k-
ernel/NIC layer, as shown in Fig.5. sys sendto() and de-
v hard start xmit() are kernel functions. The former is the
kernel implementation of sendto() while the latter delivers the
packet to the NIC driver. Moreover, the delays at runtime/sys-
tem/kernel/NIC layer correspond to TR/TS /TK /TN in Fig.5.

Fig.8 shows the CDF of the time consumed at different
layers for sending a UDP packet from apps to network. This
experiment is repeated for 100 times. We can see that the
delays at the device, kernel and system layers are relatively
stable and small. For example, Fig.8(a) shows that 90% delays
are less than 2.13us/10.78us/58.01us at the device/kernel/sys-
tem layers for Android 4.4. Similarity, Fig.8(b) illustrates
that 90% delays are less than 2.19us/13.07us/57.00us at the
device/kernel/system layers for Android 6.0.

DVM and ART introduce longer delay than other layers,
and their values are not stable. Fig.8(a) demonstrates that in
DVM 20% delays are less than 98.68us and 70% delays are
in the range of [98.68,251.57]us. ART usually causes shorter
delay than DVM. Fig.8(b) shows that in ART 20% delays
are smaller than 80.68us and 70% delays are in the range of
[80.68,128.44]us. The unstable delays caused by the runtime
may be due to the kernel’s process scheduling.

Delay due to monitoring mechanisms. We send UDP packets
of [628, 1428] bytes from the runtime layer or the system
layer, and measure the throughput with/without certain moni-
toring mechanisms. Table II shows that libpcap and Netfilter
significantly degrade the throughput due to additional delays.

Netfilter. We insert 10 string matching rules into iptables
before conducting the experiments. Table II shows that the
Netfilter rules result in throughput degradation no matter
the measurement is conducted at the runtime or the system
layer. For example, in LG Nexus 5 running Android 6.0, the
throughput can achieve 136.40Mb/s and 215.37Mb/s at the
runtime and the system layer, respectively, if the 1428-byte
packets are used. However, if the Netfilter rules are applied, the
throughput drops to 68.42Mb/s and 75.03Mb/s, individually.

Libpcap. Since Tcpdump uses Libpcap to capture packets,
we turn it on or off for getting the results with or without
Tcpdump. Table II illustrates that Tcpdump also brings ob-
vious overhead to the packet transmission. For example, the
throughput measured by 1428-byte packets at the Android

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

0 100 200 300 400 500
0

0.2

0.5

0.9
1.0

Duration (us)

C
D

F

(1) Device Layer
(2) Kernel Layer
(3) System Layer
(4) DVM Layer

(3)
(4)2.13

(1)
(2)

10.78

58.01

98.65

251.57

(a) LG Nexus 5 (Android 4.4).

0 50 100 150 200 250
0

0.2

0.5

0.9
1.0

Duration (us)

C
D

F

(1) Device Layer
(2) Kernel Layer
(3) System Layer
(4) ART Layer

(4)

(2) (3)

13.07
57.00 128.442.19

(1)

80.68

(b) LG Nexus 5 (Android 6.0).

0 50 100 150 200 2500

0.2

0.5

0.9
1

Duration (us)

C
D

F

(1) Device Layer
(2) Kernel Layer
(3) System Layer
(4) DVM layer

64.29
67.00 135.7122.17

(1) (2) (3)
(4)

(c) Samsung S3 (Android 4.4)

0 50 100 150 200 250
0

0.2

0.5

0.9
1

Duration (us)

C
D

F

(1) Device Layer
(2) Kernel Layer
(3) System Layer
(4) ART Layer

30.46

159.98
177.58

(1) (2) (3) (4)

55.50

(d) Samsung S3 (Android 6.0)
Fig. 8. Time consumed for sending a UDP packet across different layers.

TABLE II
PACKET TRANSMISSION CAPACITY MEASURED WITH DIFFERENT CONFIGURATIONS (NORMAL/WITH LIBPCAP/WITH 10 NETFILTER RULES).

System Android 4.4 Android 6.0

Device Samsung S3 (Mb/s) LG Nexus 5 (Mb/s) Samsung S3 (Mb/s) LG Nexus 5 (Mb/s)

Runtime 600 byte 54.99±6.1 / 14.86±5.3 / 12.57±4.4 68.04±5.4 / 44.98±5.3 / 32.87±5.3 37.84±4.1 / 9.00±4.3 / 7.08±3.3 65.03±5.7 / 45.35±4.5 / 26.22±5.1

layer 1400 byte 87.84±8.3 / 26.56±5.2 / 27.98±3.2 134.45±8.1 / 75.21±9.2 / 70.28±8.3 75.35±9.1 / 11.12±3.2 / 15.51±4.1 136.40±9.2 / 77.41±9.3 / 68.42±7.2

System 600 byte 90.36±8.9 / 41.40±4.4 / 37.70±5.2 112.46±7.3 / 60.94±7.1 / 32.30±8.9 32.89±8.3 / 15.48±3.3 / 11.77±3.9 72.53±7.3 / 49.42±6.2 / 38.56±7.9

layer 1400 byte 167.03±9.2 / 56.92±5.3 / 66.91±4.9 294.11±13 / 127.35±9.2 / 73.90±9.3 84.17±7.8 / 34.85±5.1 / 28.50±4.6 215.37±10 / 85.60±4.9 / 75.03±4.6

10 10 (VPN) 20 20 (VPN) 30 30 (VPN)0

10

20

30

40

50

60

70

Added Delay (ms)

R
TT

(m
s)

10.57

24.27 20.59

34.40 30.54

45.01

Fig. 9. RTT measured with and
without VPNservice.

0 5 10 15 20 250

200

400

600

800

1000

1200

200ms

R
TT

(m
s)

Measurement Interval (s)

3G
LTE

700ms

Fig. 10. RTT measured with differ-
ent intervals (Cellular).

0 100 200 300 4000
2
4
6
8

10
12
14
16

9ms

Measurement Interval (s)
R
TT

(m
s)

Samsung S3
LG Nexus 5

Fig. 11. RTT measured with differ-
ent intervals (WiFi).

50 150 250 350 450 550 650 750 850 950 1050

0

500

1000

1500

600ms

200msR
TT

(m
s)

Added Delay (ms)

Screen Off
Screen On

Fig. 12. RTT measured with differ-
ent added delays (WiFi).

4.4/6.0 runtime layer in LG Nexus 5 is 134.45/136.40Mb/s
without Tcpdump, but the value drops to 75.21/77.41Mb/s
when Tcpdump is used. Its effect is less than that of Netfilter.

VpnService. We launch LocalVPN to measure the effect of
VpnService. Since preliminary experiment shows that VpnSer-
vice will significantly delay or drop packets, we only evaluate
the additional delay caused by it. More precisely, to emulate
different network conditions, we add [10,20,30]ms delay and
use MobiScope to measure RTT 100 times. Fig.9 shows
that VpnService causes large additional delay to the results.
The differences between the mean values of the measurement
results with/without VPN is around 14ms.

Summary: The cross-layer nature of Android brings non-
negligible delay to the measurement results for both DVM
and ART. Note that packets sent across layers experience
different delays and conducting measurement in kernel suffers
less delay. Besides, the popular monitoring mechanisms also
introduce obvious delay to the measurement results. Note
due to its close relation with Wifi state transition, the power
management experiment is put in the subsection below.

D. Effect of Factors in Category 3

We run MobiScope to perform ICMP-based RTT mea-
surement at the system layer with different time intervals for
estimating the delay due to NIC state transition.

Delay due to cellular state transition. As shown in Fig.10,
when the smartphone connects to 3G network, the measured
RTTs are substantially inflated when the measurement interval
exceeds 10s. Since there is no background traffic generated
during the measurement period, we can infer that the RRC
state switches from DCH to IDLE when the idle time exceeds
10s. Similarity, we can learn that the RRC transition from
IDLE to DCH consumes around 700 ms.

When the smartphone connects to LTE network, Fig.10
illustrates that the measured RTTs are increased by 200ms
when the measurement intervals (i.e., idle time) become larger

than 15s. Therefore, we can infer that the timeout value of
the CONNECTED state is 15s and the delay introduced by
state switch from IDLE to CONNECTED is more than 200ms.
Fig.10 also shows that the state transition of either LTE or 3G
can cause significant delay to the measurement results, and
the delay resulted from 3G state transition is more than three
times of the delay brought by LTE state transition.
Delay due to WiFi state transition. We describe the result
of sending packets and that of receiving packets, individually.
Packet sending. Fig.11 shows the measured RTT with d-
ifferent measurement intervals. For Samsung S3, the RTT
values roughly center around 2ms, 6ms and 10ms, which
are separated at intervals of 50ms and 200ms. For Nexus 5,
the RTT values roughly center around 2ms, 5ms, 8ms, and
11ms. Moreover, they stay almost constant within a range of
measurement intervals, and abruptly increase when the interval
reaches a certain value (i.e., 50ms, 200ms, and 250ms). Both
Samsung S3 and Nexus 5 devices have a state transition when
the measurement interval is 200ms.

By analyzing the captured 802.11 frames, we find that
after 200ms of inactivity (i.e., ListenInterval=200ms) the WiFi
interface goes to sleep. Therefore, if the measurement interval
exceeds 200ms, the WiFi interface goes to sleep after finishing
an RTT measurement and then wakes up for the next measure-
ment. Before conducting a new measurement after wake up,
the WiFi interface needs some time to send a null data frame
(NDF) with power management bit set to 0 to retrieve frames
buffered at the AP. We can see that such additional time does
not exist when measurement intervals are less than 200ms.
Moreover, the jumps at 50ms for Samsung S3 and both 50ms
and 250ms for Nexus 5 suggest other state transitions. Due
to the lack of the WiFi driver’s source code, we could just
conjecture that they have proprietary PSM mechanisms, and
we will investigate it in future work.

For TCP ping, the tools Ping&DNS and PingTools
adopt T-P2 implementation pattern and WiFi Speed Test

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

is implemented based on T-P1 pattern. As we represent the
web server in the test bed using IP address instead of domain
name, the result of these three tools are t3 − t2 in Fig.1.
Packet receiving. Fig. 12 shows the RTT values when the
screen is on and off, respectively. By analyzing the captured
802.11 frames, we find that the WiFi interface adopts two
different PSM schemes when screen is on and off. Specifically,
when the screen is on, the WiFi interface wakes up with a time
interval of 200ms to check buffered packets in the AP. When
the screen is off, such a time interval is 600ms.
Summary: The NIC (i.e., 3G, LTE, WiFi) state transition
can introduce obvious delays to the measurement. LTE may
cause less delay than 3G, and different WiFi chipsets have
different effects. Moreover, the effects are not the same when
the smartphone is at different status (i.e., screen on/off).

E. Evaluation of kping and kband

In this experiment, we connect the smartphone to the host
via USB tethering and limit the bandwidth to 100Mbs. Setting
the server as the destination, we run kping and ping to
measure the RTT. Fig.13(a) shows that the RTTs measured by
kping center around 0.3ms with an upper bound of 0.4ms
whereas the RTTs measured by ping are highly dispersed and
fluctuate between 0.3ms and 1.3ms.

To evaluate the accuracy of capacity measurement, we run
kband and iperf (native program) on the smartphone,
both of which send 1498-byte UDP packets to the server
for measurement. Moreover, to generate cross traffic, we run
D-ITG [25] in the smartphone, which sends UDP packets
through raw socket at the system layer. The rate of cross traffic
ranges from 0pkt/s to 8000pkt/s with an incremental step of
2000pkt/s. Fig.13(b) shows the capacity measured by iperf
and kband with varying cross traffic from the smartphone to
the server. We observe that when the volume of the cross traffic
increases both iperf’s and kband’s accuracy of capacity
measurement decreases. However, compared with iperf,
kband is robust to cross traffic when measuring capacity. For
example, when the cross traffic reaches 8000pkt/s, kband can
still achieve a high accuracy with only 4.54% underestimation
whereas iperf underestimates the capacity up to 49.54%.
Summary. Conducting measurement in the kernel layer can
obtain more accurate and stable results. Moreover, it is more
robust to cross traffic than the measurement at above layers.

kping ping
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
TT

(m
s) kping

ping

(a) kping vs. ping.

10
0.

68

95
.9

4

96
.0

9

95
.8

8

95
.4

6

10
1.

99

78
.3

5

55
.5

4

51
.2

3

50
.5

9

0 2000 4000 6000 8000
0

25

50

75

100

125

150

175

Cross traffic (pkt/s, packet length = 1498 bytes)

Ba
nd

w
id

th
(M

b/
s)

kband
iperf

(b) kband vs. iperf.

Fig. 13. Evaluation of kping and kband.

VI. EXAMINING DESCRIPTIONS OF MEASUREMENT APPS

Since ambiguous descriptions may confuse users what is
measured, we construct enhanced descriptions, each of which
comprises a statement based on the static and dynamic analysis
and a figure showing how the measurement is performed. To

evaluate the clarity of the official description and the enhanced
one, we design questionnaires for 10 measurement apps [3]
and conduct user studies.

A. Questionnaire design
Fig.14 shows a snippet of the questionnaire of one particular

app. The figure shows how the app actually conducts the
measurement. The official description and the enhanced one
are presented in random orders unknown to respondents. In
other words, DESC1/DESC2 could be the official one or the
enhanced one. Such randomness is to avoid biased result due to
direct or indirect exposure of the official description. Note that
the official description is fetched from Google Play. For each
description, we ask respondents whether it is clear. They can
only select one answer from “Abs YES”, “YES”, “Neutral”,
“NO”, “Abs NO”, resulting in integer scores from five to
one, respectively. We recruit 29 respondents with knowledge
of computer networks from three cities because without such
knowledge, a respondent may not understand the descriptions.

Apps Procedure of the ping task DESC1 Is DESC1
clear? DESC2 Is DESC2

clear?

Ping&DNS

Ping a server
(via ICMP over
IPv4 or IPv6
and TCP), DNS
lookup (with
geographical
lookup of IP
addresses)

□ Abs YES
□ YES
□ Neutral
□ NO
□ Abs NO

Ping a server
using TCP packets
and the RTT
result contains
the time
consumed to
perform one DNS
lookup and build
one TCP
connection

□ Abs YES
□ YES
□ Neutral
□ NO
□ Abs NO

Program

System

Kernel

Network Card

Remote Servers

ddNetwork Card

ssRRemRemote Sere Sere vers

Net dard

SSSSSSSSSSe SerSSSe SerSere Seretttmotmotmotmotteeee

Sm
artphone

DNS

Fig. 14. A snippet of the questionnaire.

B. Result analysis
We first investigate the clarity of official descriptions. For

the 290 answers (10 answers in each questionnaire), 25.8%
(i.e., (13+62)/290) of them are “Abs YES”/“YES” (i.e., the
respondents think that the official description is clear). 7.9%
(i.e., 23/290) and 27.9% (i.e., 81/290) of them are “Abs NO”
and “NO”, respectively. For the enhanced descriptions, 71.7%
(i.e., (97+111)/290) of the answers are “Abs YES”/“YES” and
only 5.2% (i.e., (5+10)/290) of them are “Abs NO”/“NO”.

We contrast the official description with the enhanced one
derived from static and dynamic analysis. We find that the
description of Httping Tool contradicts its implementa-
tion because it claims to measure HTTP latency, but its
implementation measures the latency for establishing a TCP
connection. The descriptions of most apps are ambiguous due
to limited details. For example, PingTools’s description
only has a simple sentence “ICMP, TCP and HTTP ping”
without any details. Note that the result of its HTTP ping could
be twice of the result of its TCP ping, because it adopts H-P2
for HTTP ping and T-P2 for TCP ping. Such difference will
confuse users. The description of HTTPing, in our opinion,
is the most accurate and complete. Although Netalyzr’s
description is simple, it clearly explains the meaning of each
measurement result. That is also a good practice.

VII. RELATED WORK

Many apps for mobile network measurement have been
proposed [2], [26]–[28]. However, most of them conduct
the measurement without considering the affecting factors.
Although a few studies pointed out some factors, there is
a lack of a systematic investigation on them. For example,

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

studies on the effect of mobile network protocols and WiFi
on performance [7], [29]–[32] neither examine the effect on
measurement apps nor take into account apps’ implementation
patterns and Android architecture and configurations. Note that
all factors under our investigation have non-negligible impact
on the result of mobile network measurement.

The most closely related work is [5]. Different from ours,
they only studied the effect of DVM [5] and conducted coarse-
grained analysis. For example, they attribute the additional
delay of HTTP-based RTT measurement to DVM and ker-
nel, neglecting apps’ implementation patterns. Moreover, their
analysis has two limitations that may bias their results. First,
they monitor packets using TcpDump, which will introduce
obvious delay as shown in Tab. II. Second, they use the times-
tamps of wireless frames to approximate the time when the
request (or response) packet leaves (or reaches) the smartphone
without considering the contention of WiFi channel, which
will also bring additional delay.

Recent studies on profiling app performance [33]–[35] aim
at improving user experience rather than mobile network
measurement. QoE Doctor [33] diagnoses the user-perceived
latency of Android apps by correlating user interaction events,
network traffic and RRC states. Panappticon [34] identifies
the critical paths in user transactions, and locate performance
problems by capturing specified events at the user/kernel
layers. AppInsight locates performance bottlenecks through
critical paths in user transactions. However, it focuses on
Windows mobile apps, and needs to modify the binaries [35].

VIII. CONCLUSION AND FUTURE WORK

We conduct the first systematic investigation on why the
measurement result from apps may not be what users expect.
First, we identify new factors, revisit known factors, and
propose a novel approach as well as two tools to discover these
factors in proprietary apps. Moreover, we perform extensive
experiments to quantify the negative effects of these factors,
and develop MobiScope for demonstrating how to mitigate
such effects. Second, we find that the measurement apps’ de-
scriptions may be ambiguous and confuse users. We construct
enhanced descriptions to provide users more information on
what is measured. The user studies show the improvement of
the enhanced descriptions. This research sheds light on creat-
ing better mobile measurement apps and conducting expected
network measurement in apps. In future work, we will improve
our tools as the process is still semi-automated, and examine
more apps with large-scale user studies.

IX. ACKNOWLEDGMENT

This work is supported in part by the Hong Kong
GRF/ECS (PolyU 5389/13E, PolyU 152279/16E), the Na-
tional Natural Science Foundation of China (61602371,
61202396), the HKPolyU Research Grant (No. G-UA3X),
Shenzhen City Science and Technology R&D Fund (No.
JCYJ20150630115257892), Natural Science Basic Research
Plan in Shanxi Province (2016JQ6034), China Postdoctoral
Science Foundation (No. 2015M582663), and the Fundamental
Research Funds for the Central Universities of China.

REFERENCES

[1] “Measuring broadband america mobile broadband services,” http-
s://goo.gl/3MmsSP, 2014.

[2] U. Goel, M. Wittie, K. Claffy, and A. Le, “Survey of end-to-end mobile
network measurement testbeds, tools, and services,” Communications
Surveys Tutorials, IEEE, vol. 18, no. 1, pp. 105–123, 2016.

[3] “The measurement tools under evaluation,” https://goo.gl/MGtoAO.
[4] G. Almes and S. Kalidindi, “Rfc 2681: A round-trip delay metric for

ippm,” Sept. 1999.
[5] W. Li, R. Mok, D. Wu, and R. Chang, “On the accuracy of smartphone-

based mobile network measurement,” in Proc. IEEE INFOCOM, 2015.
[6] S. Rosen, H. Luo, Q. A. Chen, M. Mao, J. Hui, A. Drake, and K. Lau,

“Discovering fine-grained rrc state dynamics and performance impacts
in cellular networks,” in Proc. ACM MobiCom, 2014.

[7] H. Han, Y. Liu, G. Shen, Y. Zhang, and Q. Li, “Dozyap: power-efficient
wi-fi tethering,” in Proc. ACM MobiSys, 2012, p. 2012.

[8] I. Corporate, “Worldwide smartphone market will see the first single-
digit growth year on record,” https://goo.gl/1bJ1lt, Dec. 2015.

[9] A. Morton, “Rfc 7497: Rate measurement test protocol problem state-
ment and requirements,” Apr. 2015.

[10] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, and Z. M. Mao, “Samples:
Self adaptive mining of persistent lexical snippets for classifying mobile
application traffic,” in Proc. MobiCom, 2015.

[11] “isreachable,” https://goo.gl/p3sMxA.
[12] “ART and Dalvik,” https://source.android.com/devices/tech/dalvik/.
[13] “Platform versions dashboards,” https://goo.gl/YRW9II, July 2016.
[14] “Vpnservice,” https://goo.gl/2tqRTm.
[15] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich,

P. Gill, M. Allman, and V. Paxson, “Haystack: In situ mobile traffic
analysis in user space,” http://arxiv.org/pdf/1510.01419v1.pdf, 2015.

[16] “Keeping the device awake,” https://goo.gl/Kb0QZE.
[17] A. Gerber, S. Sen, and O. Spatscheck, “A call for more energy-efficient

apps,” AT&T Labs Research, 2011.
[18] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “Sapsm: Smart

adaptive 802.11 psm for smartphones,” in Proc. ACM UbiComp, 2012.
[19] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: Toward discovering

vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1, 2015.
[20] L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein, Y. Le Traon, S. Arzt,

S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: detecting
inter-component privacy leaks in android apps,” in Proc. ICSE, 2015.

[21] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for extracting
kernel malware behavior.” in proc. NDSS, 2009.

[22] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, 2007.

[23] L. Xue, C. Qian, and X. Luo, “Androidperf: A cross-layer profiling
system for android applications,” in Proc. IEEE IWQoS, 2015.

[24] L. Xue, X. Luo, and Y. Shao, “ktrxer: A portable toolkit for reliable
internet probing,” in Proc. IEEE IWQoS, 2014.

[25] “D-itg,” http://traffic.comics.unina.it/software/ITG/.
[26] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-

nating the edge network,” in Proc. ACM IMC, 2010.
[27] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao, “Mobilyzer:

An open platform for controllable mobile network measurements,” in
Proc. MobiSys, 2015.

[28] M. Wittie, B. Stone-Gross, K. Almeroth, and E. Belding, “Mist: Cellular
data network measurement for mobile applications,” in Proc. ICST
BROADNETS, 2007.

[29] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smartphones,” in
Proc. ACM MobiSys, 2010.

[30] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proc. ACM IMC, 2010.

[31] S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce 3g/lte
wireless energy consumption,” in Proc. ACM CoNEXT, 2012.

[32] L. Sun, R. K. Sheshadri, W. Zheng, and D. Koutsonikolas, “Modeling
wifi active power/energy consumption in smartphones,” in Proc. IEEE
ICDCS, 2014.

[33] Q. Chen, H. Luo, S. Rosen, Z. Mao, K. Iyer, J. Hui, K. Sontineni, and
K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated ui
control and cross-layer analysis,” in Proc. ACM IMC, 2014.

[34] L. Zhang, D. Bild, R. Dick, Z. Mao, and P. Dinda, “Panappticon: event-
based tracing to measure mobile application and platform performance,”
in Proc. CODES+ISSS, 2013.

[35] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild.” in Proc. OSDI, 2012.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

