
AndroidPerf: A Cross-layer Profiling System for
Android Applications

Lei Xue, Chenxiong Qian, and Xiapu Luo§

Department of Computing, The Hong Kong Polytechnic University
The Hong Kong Polytechnic University Shenzhen Research Institute

{cslxue,cscqian,csxluo}@comp.polyu.edu.hk

Abstract—Profiling Android applications (or simply apps) is an
important way to discover and locate various problems in apps,
such as performance bottleneck, security loopholes, etc. Although
many dynamic profiling systems for apps have been proposed,
they are limited in dealing with the multiple-layer nature of
Android and thus cannot reveal issues due to the underlying
platform or poor interactions between different layers. Note that
since apps usually run in Dalvik virtual machine (DVM) and
each DVM is a process in Android’s customized Linux kernel,
a simple operation in DVM will lead to many function calls
in different layers. In this paper, we propose AndroidPerf, a
cross-layer profiling system, including the DVM layer, the system
layer, and the kernel layer, for Android apps. It consists of one
sub-system that performs cross-layer dynamic taint analysis to
collect control flow and data flow information, and another sub-
system that conducts instrumentation on all layers for collecting
performance information. We have implemented AndroidPerf in
9,125 lines of C/C++ and 1,016 lines of Python scripts along with
some modifications to Android’s framework. Besides evaluating
its functionality and overhead, we have applied AndroidPerf to
reveal real performance issues through case studies.

I. INTRODUCTION

Being one of the most popular mobile operating systems,
Android has occupied 81.5% market share [1] and owned more
than 1.5 million applications (or simply apps) in Google Play
market [2]. It is not easy to develop popular apps because
besides functionality and usability users and developers also
care about many other features, including security and privacy
[3], [4], performance [5], [6], and energy consumption [7],
[8], etc. To profile apps and locate potential issues, various
dynamic approaches have been proposed [5]–[18].

However, these approaches are limited in their ability to
deal with the multiple-layer nature of Android, and thus
cannot uncover issues due to the underlying platform or poor
interactions between different layers. It is worth noting that
each app usually runs in a Dalvik virtual machine (DVM)
and DVM is a process in Android’s customized Linux kernel.
Moreover, app can invoke native methods through Java native
interface (JNI) or be written in native codes [19]. Operations
in DVM will lead to function calls in different layers, such as
functions in Android’s framework, functions in native libraries,
exported system calls and internal functions in kernel. It is
worth noting that hidden performance or security issues in

§ The corresponding author.

apps often result from the subtle interactions among com-
ponents on different layers [7], [14]. Unfortunately, existing
dynamic profiling systems usually focus on the DVM layer
with additional information collected from a few sources [9],
[12], [13], [15]. A few systems consider the native libraries
and system calls [7], [8], [11], and very few system takes into
account the functions in Android’s Linux kernel.

To fill in this gap, we propose AndroidPerf, a cross-layer
profiling system for Android apps. AndroidPerf covers three
layers, including the DVM layer consisting of functions in
Android framework, the system layer containing system or
third-party native libraries, and the kernel layer comprising
exported system calls and internal functions. AndroidPerf
consists of two sub-systems. One performs cross-layer dy-
namic taint analysis [20] to collect control flow and data
flow information. The other conducts instrumentation on three
layers to collect performance information, such as timestamp.

By labeling selected data sources, which are usually named
as taint sources, a dynamic taint analysis system [15], [16],
[18] can track the propagation of labelled data by enumerating
functions invoked, determining whether a function or an
instruction handles the labelled data or not, and tracing how
the label (it is usually called as a taint) is propagated from
one variable or memory space to another through different
instructions until the label reaches selected destinations, which
are usually named as taint sinks. It is worth noting that the fine-
grained information obtained through the cross-layer dynamic
taint analysis empowers users to quickly locate issues.

It is challenging to design and realize AndroidPerf because
of two reasons. First, even a simple operation in the DVM
layer can result in many function invocations in different
layers. For example, we observed that establishing a TCP
connection to a remote server in DVM will invoke 70 functions
in the DVM layer, 43 functions in the system layer, and 388
functions and 9 exceptions in the kernel layer. AndroidPerf
needs to track these functions and their relationships.

Second, it is not-trivial to trace the taint propagation across
different layers because the function invocation styles, memory
space, types, and taint propagation rules in different layers are
not the same. Moreover, cross-layer operations involve special
mechanisms. For example, function calls from an app running
in DVM to native codes in the system layer needs JNI bridge
while function calls from the system layer to the kernel layer978-1-4673-7113-1/15/$31.00 c©2015 IEEE

are realized by SWI (soft interrupt) [21]. Note that none of
existing system supports cross-layer dynamic taint analysis.

In summary, we make the following major contributions:
1) To our best knowledge, AndroidPerf is the first cross-

layer profiling system for Android applications, covering
the DVM layer, the system layer and the kernel layer.

2) We have tackled several challenging issues to design and
realize a cross-layer dynamic taint analysis sub-system
for AndroidPerf to collect control flow and data flow
information.

3) We have implemented AndroidPerf in 9,125 lines of
C/C++ and 1,016 lines of Python scripts along with
some modifications to Android’s framework.

4) We have carefully evaluated AndroidPerf’s functionality
and overhead, and applied AndroidPerf to reveal real
performance issues through case studies.

The rest of this paper is organized as follows. Section II
and Section III describe the design and the implementation of
AndroidPerf, respectively. Section IV presents the evaluation
results and the applications of AndroidPerf. After describing
AndroidPerf’s limitations and the future work in Section V,
we introduce the related work in Section VI and conclude the
paper in Section VII.

II. DESIGN OF ANDROIDPERF

AndroidPerf

Emulator Smartphone

Dynamic taint analysis
sub-system

DVM layer

System layer

Kernel layer

Function
selection

Instrumentation
sub-system

System layer

Kernel layer

Profiling
report

Control flow
and data flow

Root causes

Performance
Issues

DVM layer

1

2

3

5

1

3
4

5

4 2

Fig. 1. Overview of AndroidPerf.

A. Overview

As shown in Fig. 1, AndroidPerf consists of two sub-
systems. One performs dynamic taint analysis at three layers to
generate control flow and data flow information. Control flow
refers to the sequence of functions invoked by an operation,
and data flow contains the functions involved in the taint
propagation. Note that the functions in control flow is a
superset of that in data flow. This sub-system is built on top
of the open source emulator QEMU [22]. The other sub-
system conducts instrumentation on three layers to collect
performance information, such as timestamp, and this sub-
system runs in a real smartphone.

Fig.1 also illustrates two use scenarios of AndroidPerf.
Given an app, AndroidPerf can first collect all functions called
by an operation and label those involved in taint propagation
(i.e.,¬ and). Based on this information, a user can decide
critical functions (i.e., ®) and then ask AndroidPerf to instru-
ment them (i.e., ¯) and collect run-time information (i.e., °).
For example, Section IV-C demonstrates how to quantify the
delay introduced by each layer to packet transmission. Note
that how to select critical functions is out of the scope of this
paper because different functions may be selected for different
purposes and we will examine it in future work.

Alternatively, a user may have observed performance issues
in an app by using the instrumentation sub-system and wants
to determine the root cause (i.e.,¶ and ·). She can use the
dynamic taint analysis sub-system to output the control flow
and data flow information (i.e., ¸ and ¹). Such information
along with the performance measurement result will help she
find the root causes (i.e., º). For example, Section IV-B
demonstrates how AndroidPerf facilitates in explaining the
performance differences among three file writing approaches.

B. Dynamic Taint Analysis Sub-system

Android

System layer

Host (PC)

Linux Kernel

Native
Components

Third-party
Libraries

System
Libraries

DVM
extended by TaintDroid

Java Applications

Java Libraries

JNI bridge JNI Hook Engine

In
stru

ctio
n

Tracer

System Layer
Tracer

Kernel Layer
Tracer

Taint Manager

Taint Propagation Engine

DVM tracer

DECAF instruction hook interface DECAF OS-level view Emulator

Fig. 2. Architecture of the Dynamic Taint Analysis Sub-system.

This sub-system takes in an app, runs it, and then outputs
the app’s control flow and data flow information. To our best
knowledge, it is the first system that can perform dynamic
taint analysis for all three layers, including DVM layer, system
layer, and kernel layer.

We adopt the virtual machine introspection (VMI) technique
[23] to develop the dynamic taint analysis sub-system. As
shown in Fig.2, the Android system runs in an emulator and
AndroidPerf has major components within the emulator to
monitor the execution of apps and record necessary informa-
tion. Since the components in the emulator collect information
in the system layer and the kernel layer, AndroidPerf uses
TaintDroid [15] to trace information flows within DVM. We
describe the functionality of major components in the follow-
ing paragraphs and detail the implementation in Section III.

DVM Tracer. It extends Android’s profiling framework to
automatically obtain the sequence of invoked functions. The
DVM tracer overcomes the limitations in the original profiling
framework. First, the DVM tracer can trace the whole life
cycle of an app without modifying the app. Second, the infor-
mation related to function entering and existing can be dumped

in real time while the original framework can only output
it after the profiling process stops. Consequently, the DVM
tracer can also circumvent the buffer size limitation (8MB by
default) in Android’s profiling framework. Moreover, DVM
tracer modifies Taintdroid to dump the functions involved in
taint propagation. Section III-A details its implementation.

System Layer Tracer. It traces native functions in both
system libraries and third-party libraries. More concretely, it
records each function’s entry address and return address, and
decides whether a function is called by comparing the current
address with record entry addresses and return addresses. We
elaborate on its realization in Section III-C.

Kernel Layer Tracer. It traces functions in kernel and
deals with other issues including process switch and exception
handling. The kernel functions are traced in a similar way
as native functions. To monitor process switch, we hook the
function cpu v7 switch mm() relevant to process switch. The
kernel layer tracer also traces ARM interrupts and exceptions
to identify the corresponding handling routines. Note that all
interrupts (including hardware reset) are also called exceptions
in ARM [21]. For example, all system calls on the sys-
tem layer invoke their corresponding kernel implementations
through SWI (software interrupt). Section III-D details the
implementation of kernel layer tracer.

Taint Manager. Due to diverse requirements, AndroidPerf
supports several types of taint sources and taint sinks through
the taint manager. In the DVM layer, AndroidPerf re-uses the
taint sources of TaintDroid [15]. In the system layer and the
kernel layer, AndroidPerf supports four types of taint sources:

1) Taints propagated from DVM to the system layer;
2) The parameters and/or return values of native functions

or kernel functions;
3) Memory. For example, to trace the taint propagation

process of the sk buff struct, the user can attach taint
labels to its memory. Moreover, different parameters of
sk buff can also be attached with different taint labels.

4) I/O interfaces. Such taint sources are designed to track
data (e.g., a packet) from outside. AndroidPerf regards
the network interface (NIC) as a taint source. Therefore,
when a packet is received by the NIC, it will be attached
with taint labels automatically.

Currently, AndroidPerf supports two types of taint sinks,
including NIC’s sending functions and memory deallocation
functions. For example, when a packet is sent out through an
NIC, AndroidPerf will terminate the taint propagation of this
packet. More taint sources and sinks, such as those in [24],
will be added in future work.

JNI Hook Engine. It tracks the data flow through JNI
bridge for propagating the taints between the DVM layer and
the system layer. More precisely, the JNI Hook Engine instru-
ments selected JNI-related functions, which are responsible for
delivering data across the DVM layer and the system layer, for
taint propagation. We elaborate on the implementation of JNI
hook engine in Section III-B.

Taint Propagation Engine. It directs the taint propagation.
In the DVM layer, AndroidPerf relies on TaintDroid [15] to

trace taints. Since TaintDroid does not support taint analysis
in the system layer and the kernel layer, AndroidPerf realizes
an ARM ISA-level taint engine with byte granularity. Hence,
char type occupies one taint label, short type occupies two
taint labels and int type occupies four taint labels.

AndroidPerf supports three classes of taint propagation
policies:

1) set operation (t(D) = t(S));
2) add (or) operation (t(D) = t(D)|t(S));
3) clear operation t(D) = 0;

where t(S) represents the taint label of the source address or
register and t(D) represents the taint label of the destination
address or register. If AndroidPerf propagates S’s taint to D
with set operation, D has the same taint label with S. Note
that AndroidPerf supports multiple taints.

If the add operation is used, D has both its own taint label
and S’s taint label. Since each taint type occupies one bit,
AndroidPerf can maintain 8 types of taints simultaneously
when byte is used to store taint labels. It is easy to use larger
data type to store more taint types.

Moreover, we add the taint clear operation in AndroidPerf
to reduce over-taints. When the clear operation is applied to
D, its taint label will be removed. How to realize the taint
propagation engine is explained in Section III-E.

Instruction Tracer It hooks each ARM/Thumb instruction
and disassembles the instruction so that the taint propaga-
tion engine can propagate the taint according the instruction
logic. The instruction tracer depends on the instruction hook
interface of DECAF [25] and can obtain each instruction
before it is executed. Moreover, the system layer tracer and
the kernel layer tracer trace function entering and exiting
operations according to the destination address of the block
jump instruction.

C. Constructing Control Flow and Data Flow Information.
AndroidPerf parses the tracing logs generated by the dynam-

ic taint analysis subsystem to construct control flow and data
flow information. Since the entering and the exiting operations
of each function are recorded, we extract function sequences
according to the execution order of functions. If one taint
propagation operation occurs between the entering operation
and the exiting operation of one function, it means that the
taint is propagated in the function.

A B C

Taint
propagation

Function entry
Function exit

1

2 3

4

5

7

9

A

D

B

Control flow
and data flow

D

6

8
C

Fig. 3. Constructing control flow and data flow from tracing logs.

Fig. 3 demonstrates how to construct the control flow and
data flow information for functions A, B, C and D. The

right subfigure in Fig. 3 shows the records of function calls.
Function A calls function B, function B invokes function C,
and function A calls function D after function B exits. We
can construct the control flow as shown in the left subfigure
in Fig. 3. Moreover, since the taint propagation information
between function D’s entry point and exit point can be loated
from tracing logs, we know that function A and function D
are involved in taint propagation and therefore we can obtain
the data flow information marked by red nodes and red line.

D. Instrumentation Sub-system

After the critical functions are selected from the output
of the dynamic taint analysis sub-system, AndroidPerf will
perform instrumentation to collect required information.

As an example of demonstrating the usage of AndroidPerf,
we instrument functions at different layers to collect times-
tamps of invoking certain functions. At the DVM layer, we
extend Android’s profiling framework to collect information
about specified apps according to their Linux user IDs (UID).
Then we parse the trace files and get the time spent on each D-
VM function with microsecond resolution. In the system layer,
AndroidPerf uses strace [26] to trace system calls and print the
time spent on each syscall with microsecond resolution. In the
kernel layer, AndroidPerf employs kprobe [27] to hook kernel
functions and uses function ktime get() to acquire timestamp
with nanosecond resolution. The time spent on one kernel
function can be calculated by using the timestamps obtained
at its entry point and exit point.

III. IMPLEMENTATION OF ANDROIDPERF

We have implemented AndroidPerf in 9,125 lines of C/C++
with 1,016 lines of Python scripts. Moreover, we modify
Android’s framework to collect control flow and data flow
information and conduct instrumentation at the DVM layer.
In this section, we detail the implementation of some major
components in AndroidPerf.

A. DVM Tracer

We extend Android’s profiling framework to collect control
flow information. Note that the function dvmMethodTraceAd-
d() implemented in Profile.c is called each time when a method
is entered or exits. This function provides class name, method
name, method shorty (descriptions of the types of parameters),
thread ID and process ID. Hence, we modify this function to
dump control flow information.

However, Android’s profiling functions are not enabled
by default. They can be started or stopped by calling De-
bug.startMethodTrace() or Debug.stopMethodTrace() in apps.
To profile apps without source codes, we modify ActivityMan-
agerProxy.attachApplication() in ActivityManagerNative.java
to start app profiling automatically. Note that when an app is
launched, it calls ActivityManagerProxy.attachApplication() to
pass the new IApplicationThread instance of the new process
to ActivictyManagerService.

To specify the app under examination, we put its UID,
which can be found from /data/system/packages.list, in the

file /sdcard/uid. At the end of function ActivityManagerProx-
y.attachApplication(), the DVM tracer reads the UID from that
file and compares it with the current app’s UID. If they are
the same, the app will be traced. To analyze multiple apps,
users can put their UIDs in that file.

Taint propagation at the DVM layer is achieved by Taint-
Droid. Since TaintDroid doesn’t output taint information dur-
ing taint propagation, we modify TaintDroid to output the taint
propagation information in real time.

B. JNI Hook Engine

JNI hook engine is implemented by hooking function d-
vmCallJNIMethod() (JNI Call Bridge) in libdvm.so, which is
used to transfer execution from DVM to native code. More
precisely, the JNI hook engine first locates the parameters
passed to the native codes and their taint labels according to
the first parameter of dvmCallJNIMethod() and then points
to the memory storing the method’s parameters and their
taint labels. After that, the JNI hook engine extracts the
method address, access flags and method shorty by parsing
the third parameter of dvmCallJNIMethod(), which points to
the memory of structure Method. Finally, the JNI hook engine
propagates the taint information from the DVM layer to the
system layer before the native method is executed.

C. System Layer Tracer

To obtain the control flow information at the system layer,
the system layer tracer traces each function’s entry and exit
addresses by hooking each block jump instruction. Note that
one function is called when the program counter (PC) jumps
to its entry address. When the function exits, PC jumps to its
return address.

The system layer tracer collects all native functions’ names
and their entry addresses. Since all system libraries are in
the directory /system/lib/, we extract all symbols and their
offset addresses using objdump. These symbols include both
the variable symbols and function symbols and we just select
function symbols with the symbol marks (’T’ stands global
method and ’t’ stands local method). From Android 4.3.1,
we extract 56,374 symbols from 204 system libraries. For the
third-party functions implemented by apps, we extract them
from the app’s own libraries in the directory /data/app-lib/.

When the system layer tracer starts tracing, it gets the
beginning addresses of the libraries according to the OS-
level semantic knowledge provided by DECAF [25]. The
absolute addresses of native functions are calculated according
to the offset and their libraries’ beginning addresses. The
functions’ names and absolute addresses are stored in the
native function hash table, where hash keys are the functions’
absolute addresses and hash values are functions’ names. The
return address is fetched from the register R14 [28]. Since the
function calling obeys the nested rule, we use stack structure
to store function return addresses.

Information about function entering and exiting is obtained
according to the destination address of the block jump instruc-
tion. More precisely, we implement a block jump hook routine

to process each block jump instruction before it is executed
through the instruction hook interface of DECAF [25].

D. Kernel Layer Tracer

To collect control flow information in the kernel, the kernel
layer tracer also needs to first get the kernel functions’
entry addresses. All kernel functions and their absolute entry
addresses can be parsed from the kernel symbol table of the
guest Android system directly. From Android Linux kernel
version 3.4, we extract 35728 different kernel symbols.

Kernel symbol table can be read from file System.map or
kallsyms. System.map is a real file on the Android system and
each kernel has its own System.map. kallsyms is a ”proc file”
in the directory /proc/ and it is created on the fly when the
Android kernel boots up. Since non-root users cannot extract
the addresses of the symbols stored in kallsyms, AndroidPerf
extracts the kernel symbols and obtains their addresses from
System.map.

Since tracing functions at the kernel layer is similar to that
at the system layer, we just describe how to obtain other
important information, such as process switch and exceptions.

There is a special situation that we cannot specify the
traced processes’ PIDs because the processes’ PIDs are not
fixed. For example, we cannot know the PID of the process
which handles the Ethernet device interrupt and receives the
packet arriving at the host. Since the Ethernet device interrupt
handling routine starts from function smc interrupt(), we hook
this function to acquire the PID of the routine handling the
packet receiving interrupt. Note that process switches when
the interrupt handling routine finishes. Hence, we can trace
the existing of the packet receiving interrupt handling routine
through monitoring process switch. Because process context
is switched in function cpu v7 switch mm(), we hook this
function to monitor process switch.

TABLE I
OFFSET AND RETURN ADDRESS OF ARM EXCEPTION.

Exception Offset Return address
Reset 0x00 Not available
Undefined
Instruction

0x04 ARM: R14=PC+4 Thumb: R14=PC+2

SWI 0x08 ARM: R14=PC+4 Thumb: R14=PC+2
Abort (data) 0x10 R14=PC+8
Abort (prefetch) 0x0c R14=PC+4
FIQ 0x18 R14=PC+4
IRQ 0x1c R14=PC+4

AndroidPerf also handles ARM exceptions. There are 7
different types of exceptions stored in exception vector table
on ARM platform [21]. The vector table actually contains con-
trol transfer instructions that jump to the respective exception
handlers. And the location of the exception vector addresses
is configured through setting the V bit in register CP15 [29],
where 0 means base address of the vector is 0x00000000
and 1 means the base address is 0xffff0000. AndroidPerf
first gets the V bit in register CP15 to know the exception
vector address, and then calculates the absolute addresses of
all exception entries according to their offset addresses in

Table I. Because exception handlers are not entered and exited
through jump instruction, we hook each ARM instruction to
trace exception handlers’ entries and exits.

Since exceptions also obey the nested rule, AndroidPerf uses
stack to store exceptions’ return addresses. When the program
counter (PC) enters an exception handing routine, Android-
Perf obtains the exception type and calculates the exception’s
return address according to the exception processing rules in
Table I, and then pushes the return addresses into exception
stack. When PC branches to the return address on the top of
the exception stack, AndroidPerf logs this event and pops its
return address from the stack.

E. Taint Propagation Engine
AndroidPerf creates shadow memory tables to save the taint

labels of real memory and shadow registers to maintain the
taint labels of real registers, and refers to them when the taint
information is propagated. To save memory, only the addresses
with taint labels will be stored in the shadow memory table. In
order to improve the taint lookup efficiency, AndroidPerf uses
hash table to implement the shadow memory table, where the
memory addresses serve as the hash keys.

AndroidPerf propagates taints according to the taint propa-
gation policy logic. Among 148 ARM and 73 Thumb instruc-
tions, we found that 101 ARM and 55 Thumb instructions
affect taint propagation after manual analysis. Table II lists
the taint propagation logic for general types of ARM/Thumb
instructions that can affect taints propagation.

binary−op represents binary operators(e.g., add, sub, etc.);
unary − op denotes unary operators(e.g., NOT, etc.); Rd and
Rn indicate ARM registers; #Imm is an immediate number;
M [addr : addr+ n] denotes memories from addr to addr+
n−1; | represents the union operation; Cal(Rn,#Imm) cal-
culates the result based on Rn and #Imm; t(Rd) represents
the taint of register Rd; t(M [addr : addr + n]) denotes the
taints of the memories starting from addr to addr + n − 1;
LDM/STM denote the load/store multiple values instruction
from/to memory, POP/PUSH represent the special cases of
LDM/STM where Rn = SP , and SWP donate the values
switch instruction. For instructions of types LDR∗/STR∗, we
set the taint of Rd to the union of t(M [addr : addr+n]) and
t(Rn), because addr is calculated based on Rn and #Imm.
That is, if the tainted input is the address of an untainted value,
the taint will be propagated to it.

IV. EVALUATION

In this section, we evaluate AndroidPerf’s functionality and
overhead. We run the dynamic taint analysis sub-system on
a desktop running Ubuntu 14.04 system with Intel i7 CPU
and 32G memory. The guest system in the emulator is a
modified Android version 4.3 system with Linux kernel 3.4.
Moreover, we run the instrumentation sub-system on a Nexus
4 smartphone.

A. Cross-layer Call Graphs
To evaluate AndroidPerf, We develop an app with several

operations, including writing data into a file in /sdcard, sending

TABLE II
TAINT PROPAGATION LOGIC FOR ARM/THUMB/THUMB2 INSTRUCTIONS: SYMBOL ” ◦ ” INDICATES BINARY OPERATORS, SYMBOL ” ∼ ” INDICATES

UNARY OPERATORS AND SYMBOL”¬” INDICATES A BITWISE LOGICAL NOT OPERATION; FOR M [addr : addr + n] IN LDR* AND STR*, n CAN BE 1, 2
OR 4; f(regList) COUNTS NUMBER OF 1 IN REGLIST.

Insn Format Insn Semantics Policy
type

Taint Propagation Description

binary-op
Rd, Rn, Rm[,#Imm]

Rd = Rn ◦ Rm[◦#Imm] set t(Rd) = t(Rn) | t(Rm) set Rd’s taint with union of Rn’s and Rm’s

binary-op
Rd, Rn[,#Imm]

Rd = Rd ◦ Rn[◦#Imm] add t(Rd) |= t(Rn) add Rn’s taint to Rd

binary-op
Rd, Rn, Rm, Ra

Rd = Rn ◦ Rm ◦ Ra set t(Rd) = t(Rn) | t(Rm) |
t(Ra)

set Rd’s taint with union of Rn’s, Rm’s and Ra’s

binary-op
RdHi,RdLo,Rn, Rm

< RdHi : RdLo >= Rn ◦Rm set t(RdHi) = t(Rn) | t(Rm)
t(RdLo) = t(Rn) | t(Rm)

set both RdHi’s and RdLo’s taints with union of Rn’s
and Rm’s

unary-op Rd, Rm Rd =∼ Rm set t(Rd) = t(Rm) set Rd’s taint with Rm’s
mov Rd,#Imm Rd = #Imm clear t(Rd) = TAINT CLEAR clear Rd’s taint
mov Rd, Rm Rd = Rm set t(Rd) = t(Rm) set Rd’s taint with Rm’s
mov Rd, Rm,#Imm Rd = Rm ◦#Imm set t(Rd) = t(Rm) set Rd’s taint with Rm’s
mvn Rd,#Imm Rd = ¬#Imm clear t(Rd) = TAINT CLEAR clear Rd’s taint
mvn Rd, Rm Rd = ¬Rm set t(Rd) = t(Rm) set Rd’s taint with Rm’s
mvn Rd, Rm,#Imm Rd = ¬(Rm ◦#Imm) cset t(Rd) = t(Rm) set Rd’s taint with Rm’s
LDR∗ Rt, Rn,#Imm addr = Cal(Rn,#Imm)

Rt = M [addr : addr + n]
set t(Rt) = t(M [addr : addr +

n]) | t(Rn)
set Rt’s taint with union of Rn’s and M [addr :
addr + n]’s

LDR∗ Rt, Rn, Rm addr = Cal(Rn, Rm)
Rt = M [addr : addr + n]

set t(Rt) = t(M [addr : addr +
n]) | t(Rn) | t(Rm)

set Rt’s taint with union of Rn’s, Rm’s and M [addr :
addr + n]’s

LDR∗
Rt, Rn, Rm,#Imm

addr = Cal(Rn, Rm,#Imm)
Rt = M [addr : addr + n]

set t(Rt) = t(M [addr : addr +
n]) | t(Rn) | t(Rm)

set Rt’s taint with union of Rn’s, Rm’s and M [addr :
addr + n]’s

LDM(POP) Rn, regList startAddr = R[n]
endAddr = R[n] +
f(regList) ∗ 4
{Ri, ..., R(i+f(regList)−1} =
M [startAddr : endAddr]

set t({Ri, ..., Ri+f(regList)−1}) =
t(Rn) | t(M [startAddr :
endAddr])

set Ri’s taint with union of Rn’s and M [startAddr :
startAddr + 4]’s, set Ri+1’s with union of Rn’s
and M [startAddr + 4 : startAddr + 8]’s,
..., set Ri+f(regList)−1’s with union of Rn’s and
M [endAddr − 4 : endAddr]’s

STR∗ Rt, Rn,#Imm addr = Cal(Rn,#Imm)
M [addr : addr + n] = Rt set

t(M [addr : addr+n]) = t(Rt) set M [addr : addr + n]’s taints with Rt’s

STR∗ Rt, Rn, Rm addr = Cal(Rn, Rm)
M [addr : addr + n] = Rt

set t(M [addr : addr+n]) = t(Rt) set M [addr : addr + n]’s taints with Rt’s

STR∗
Rt, Rn, Rm,#Imm

addr = Cal(Rn, Rm,#Imm)
M [addr : addr + n] = Rt

set t(M [addr : addr+n]) = t(Rt) set M [addr : addr + n]’s taints with Rt’s

STM(PUSH) regList startAddr = R[SP] −
f(regList) ∗ 4
endAddr = R[SP]
M [startAddr : endAddr] =
{Ri, ..., R(i+f(regList)−1)}

set t(M [startAddr :
endAddr]) =
t({Ri, ..., R(i+f(regList)−1)})

set M [startAddr : startAddr + 4]’s taints with
Ri’s, set M [startAddr + 4 : startAddr + 8]’s
with Ri+1’s, ..., set M [endAddr− 4 : endAddr]’s
taint with R(i+f(regList)−1)’s

SWP∗ Rt, Rn, Rm Rt = M [Rm]
M [Rm] = Rn

set t(Rt) = t(Rm) | t(M [Rm])
t(M [Rm]) = t(Rn)

set Rt’s taint with union of Rm’s and M [Rm]’s and
set M [R]’s with Rn’s

UDP packets, and so on. Then we run AndroidPerf to trace
these three operations, and construct the cross-layer call graphs
using the control flow and data flow information extracted
from the tracing logs.

The number of calls (edges) and functions (nodes) that are
involved by these operations are summarised in Table III. We
can observe that the kernel layer has the largest number of
function invocations and unique functions. The call graphs of
these three operations (only that of FileOutputStrem.write()
is shown in Fig.4 because of page limit) show that all these
operations will call their corresponding system calls through
JNI bridge. Moreover, we can observe that the function call
from the system layer to the kernel layer goes through SWI
(software interrupt).

B. Case Study 1: Comparing File Writing Functions
There are three Java classes providing functions to write

data into a file, including FileOutputStrem, BufferedOutput-
Stream and FileWriter. Although we may notice their perfor-
mance differences, it is not easy to identify the root causes.
We use AndroidPerf to facilitate the in-depth analysis.

TABLE III
NUMBER OF FUNCTION INVOCATIONS AND THAT OF UNIQUE

FUNCTIONS INVOLVED IN THREE OPERATIONS

Operations DVM layer System layer Kernel layer Exception
Socket.connect() 103/70 229/42 2165/388 9
DatagramSocket.send() 169/84 333/46 1337/318 9
FileOutputStream.write() 257/137 190/39 285/170 2

We first developed an app that invokes different functions
to store data into files in SDcard. For each test, the app
opens one empty file, writes 256 bytes data with different
iterations (1000/4000/7000/10000) into this file, then closes
this file. The time is calculated from opening file to closing
file. For each method, we run 30 times and show the time
from opening files to closing files in Fig.5. The result shows
that FileOutputStream is about five times slower than both
BufferedOutputStream and FileWriter, while BufferedOutput-
Stream is only a little bit better than FileWriter.

To identify the root causes of the different performance,
we run AndroidPerf to trace these three methods and recon-

java/lang/ThreadLocal$Values.getAfterMiss:LL

java/lang/ThreadLocal$Values.cleanUp:Vjava/lang/ThreadLocal.access$300:LL dalvik/system/BlockGuard$2.initialValue:Ljava/lang/ThreadLocal.access$200:IL

java/lang/ThreadLocal$Values.rehash:Z java/lang/ThreadLocal$Values.next:II java/lang/ref/Reference.get:L

java/util/regex/Matcher.find:Z

java/util/regex/Matcher.findNextImpl:ZJLL

libcore/io/Posix.write:ILLII

libcore/io/Posix.writeBytes:ILLII

java/lang/StringBuilder.<init>:V java/lang/StringBuilder.append:LLjava/lang/StringBuilder.toString:L

java/io/FileDescriptor.getDescriptor:I dalvik/system/Taint.log:VL java/lang/StringBuilder.append:LI

java/lang/Integer.toHexString:LI

java/lang/String.replaceAll:LLL dalvik/system/Taint.logPathFromFd:VI dalvik/system/Taint.getTaintByteArray:IL dalvik/system/Taint.addTaintFile:VII libcore/io/Posix.writeBytesImpl:ILLIIjava/lang/String.<init>:VLII

libcore/io/ForwardingOs.access:ZLI

libcore/io/Posix.access:ZLI

java/lang/String.<init>:VLIIL

java/nio/charset/Charset.name:Ljava/lang/String.equals:ZL

java/io/File.join:LLL

java/lang/StringBuilder.append:LC

java/lang/String.charAt:CI

java/lang/String.length:I

java/lang/AbstractStringBuilder.<init>:V

java/lang/AbstractStringBuilder.append0:VL java/lang/AbstractStringBuilder.append0:VC

java/lang/AbstractStringBuilder.toString:L

java/lang/String.length_intrinsic:I

java/util/regex/Pattern.<init>:VLI

java/lang/ref/FinalizerReference.add:VLjava/util/regex/Pattern.compile:V

java/lang/ref/FinalizerReference.<init>:VLLjava/util/regex/Pattern.compileImpl:JLI

android/app/ContextImpl.openFileOutput:LLI

java/io/File.getPath:L

android/app/ContextImpl.makeFilename:LLL android/app/ContextImpl.setFilePermissionsFromMode:VLIIandroid/app/ContextImpl.getFilesDir:Ljava/io/FileOutputStream.<init>:VLZ

java/lang/String.indexOf:II java/io/File.<init>:VLL android/os/FileUtils.setPermissions:ILIIIjava/io/File.exists:Zjava/io/OutputStream.<init>:V libcore/io/IoBridge.open:LLIdalvik/system/CloseGuard.open:VLdalvik/system/CloseGuard.get:Ljava/io/File.getAbsolutePath:L

java/lang/String.fastIndexOf:III java/io/File.fixSlashes:LLjava/lang/String.isEmpty:Z

java/lang/ThreadLocal.get:L

java/lang/ThreadLocal.initializeValues:LLjava/lang/ThreadLocal$Values.access$100:ILjava/lang/ThreadLocal$Values.access$000:LL java/lang/ThreadLocal.values:LL java/lang/Thread.currentThread:L

java/lang/ThreadLocal$Values.<init>:Vjava/lang/VMThread.currentThread:L

java/lang/String.toCharArray:L

java/lang/System.arraycopy:VLILII

dalvik/system/BlockGuard.getThreadPolicy:L

java/io/File.doAccess:ZI

java/util/regex/Matcher.reset:LLII

java/lang/String.toString:Ljava/util/regex/Matcher.resetForInput:V

java/util/regex/Matcher.useTransparentBoundsImpl:VJZ java/util/regex/Matcher.setInputImpl:VJLIIjava/util/regex/Matcher.useAnchoringBoundsImpl:VJZ

java/util/regex/Matcher.groupCount:I

java/util/regex/Matcher.groupCountImpl:IJ

java/lang/String.fastIndexOf_intrinsic:III

java/lang/String.getBytes:L

java/lang/String.getBytes:LLjava/nio/charset/Charset.defaultCharset:L

java/nio/charset/Charsets.toUtf8Bytes:LLII

java/util/regex/Matcher.reset:L

java/io/OutputStream.write:VL

java/io/FileOutputStream.write:VLII

libcore/io/IoBridge.write:VLLII

java/lang/ThreadLocal$Values.initializeTable:VI

java/util/regex/Matcher.reset:LL

java/lang/IntegralToString.appendInt:VLI

java/lang/IntegralToString.intToHexString:LIZI

java/util/regex/Pattern.matcher:LL java/util/regex/Matcher.replaceAll:LLjava/util/regex/Pattern.compile:LL

java/lang/String._getChars:VIILI java/lang/AbstractStringBuilder.enlargeBuffer:VI

java/lang/IntegralToString.convertInt:LLI

dalvik/system/Taint.getTaintInt:IIdalvik/system/Taint.addTaintString:VLIjava/util/regex/Matcher.usePattern:LL

java/util/regex/Matcher.openImpl:JJ

java/lang/StringBuffer.toString:L

java/lang/String.<init>:VIIL

libcore/io/BlockGuardOs.write:ILLII

dalvik/system/BlockGuard$1.onWriteToDisk:V

java/util/regex/Matcher.<init>:VLL java/util/regex/Matcher.appendTail:LLjava/lang/StringBuffer.<init>:VI

java/io/FileOutputStream.close:V

dalvik/system/CloseGuard.close:V libcore/io/IoUtils.close:VL

libcore/io/BlockGuardOs.close:VL

java/io/FileDescriptor.valid:Zlibcore/io/Posix.close:VL libcore/io/ForwardingOs.fstat:LLlibcore/io/OsConstants.S_ISSOCK:ZI

libcore/io/Posix.fstat:LL

libcore/io/StructStat.<init>:VJJIJIIJJJJJJJ

libcore/io/BlockGuardOs.open:LLII libcore/io/OsConstants.S_ISDIR:ZI

dalvik/system/BlockGuard$1.onReadFromDisk:V libcore/io/Posix.open:LLII

android/content/ContextWrapper.openFileOutput:LLI

java/io/FileDescriptor.<init>:V

java/lang/ref/Reference.<init>:VLL

java/lang/String.substring:LII java/lang/StringBuffer.append:LL

com/ndroid/demos/Demos.access$802:LLL

java/lang/AbstractStringBuilder.<init>:VI

java/util/Arrays.checkOffsetAndCount:VIII

java/io/File.isAbsolute:Z

com/ndroid/demos/Demos.access$500:LL com/ndroid/demos/Demos.access$800:LL

(a) DVM layer.

u:_Z16dvmCallJNIMethodPKjP6JValuePK6MethodP6Thread

u:dvmPlatformInvokeu:memcpy

u:_Z15dvmChangeStatusP6Thread12ThreadStatus u:free

u:_ZN16IndirectRefTable3addEjP6Object

u:malloc

u:_Z21dvmTaintPropJniMethodPKjP6JValuePK6Method

u:pthread_mutex_lock

u:_Z16dvmGetJNIRefTypeP6ThreadP8_jobject

u:write

u:pthread_mutex_unlock

u:_Z21dvmGetJNIEnvForThreadv u:strchr

u:_Z20dvmDecodeIndirectRefP6ThreadP8_jobject

u:_Z27dvmRemoveFromReferenceTableP14ReferenceTablePP6ObjectS2_

u:_Z16dvmIsHeapAddressPv

u:_Z13dvmThreadSelfv

u:jniGetFDFromFileDescriptor u:_Z22dvmAddToReferenceTableP14ReferenceTableP6Object

u:dlfree u:dlmalloc

u:strcpy

u:_Z14getObjectTaintP6ObjectPKc

u:_Z24dexParameterIteratorInitP20DexParameterIteratorPK8DexProto u:strcat u:strlen u:_Z17propMethodProfilePKjPK6Method

u:_Z18dvmComputeUtf8HashPKc u:_Z18dvmHashTableLookupP9HashTablejPvPFiPKvS3_Eb

u:_Z34dexParameterIteratorNextDescriptorP20DexParameterIterator u:_Z25dexProtoGetParameterCountPK8DexProto

finish_task_switch.constprop.92

sub_preempt_count

yaffs_gross_unlock

mutex_unlock

fget_light

__rcu_read_unlock__rcu_read_lock

get_page_from_freelist

zone_dirty_oknext_zones_zonelist zone_watermark_ok

zone_reclaimable_pages__aeabi_uidiv __zone_watermark_ok

file_update_time

mnt_drop_write_filemnt_want_write_file current_fs_time __mark_inode_dirty

mnt_drop_writemnt_clone_write

timespec_trunc current_kernel_time

add_preempt_count

strcmp bdi_wakeup_thread_delayed

find_lock_page

find_get_page

radix_tree_lookup_slot

tick_program_event

clockevents_program_event

ktime_get

__aeabi_llsr

goldfish_timer_set_next_event

rw_verify_area

security_file_permission

selinux_file_permission

goldfish_timer_read

iov_iter_fault_in_readable

enqueue_task

enqueue_task_fairupdate_rq_clock

update_cfs_shares place_entity __enqueue_entity update_currsched_clock_cpu

unmask_irq

goldfish_unmask_irq

__exception_text_start

handle_IRQ

generic_handle_irq

irq_exitirq_enter

u:strcmp

SWI

u:__strchr_chk

u:_ZNK16IndirectRefTable3getEPv

u:_Z23dvmFindInReferenceTablePK14ReferenceTablePP6ObjectS3_

u:pthread_getspecific

__mnt_is_readonly

sys_write

mod_timer

lock_timer_base

debug_smp_processor_id

internal_add_timer find_last_bit

yaffs_file_rd

yaffs_addr_to_chunk yaffs_find_chunk_cacheyaffs_rd_data_obj

__aeabi_lasryaffs_find_chunk_in_file__memzero

activate_task

memcpy

grab_cache_page_write_begin

__alloc_pages_nodemask

add_to_page_cache_lru

add_to_page_cache_locked

__lru_cache_add

yaffs_gross_lock

mutex_lock

yaffs_write_end

yaffs_wr_fileunlock_page yaffs_set_super_dirty put_page

yaffs2_handle_hole yaffs_do_file_wr__wake_up_bitpage_waitqueue

balance_dirty_pages_ratelimited_nr

sched_clock

jiffy_sched_clock_read

__generic_file_aio_write

file_remove_suidgeneric_file_buffered_write generic_segment_checks

mark_page_accessedyaffs_write_begin _cond_resched

flush_dcache_page

iov_iter_copy_from_user_atomic

iov_iter_advance

hrtimer_wakeup

wake_up_process

try_to_wake_up

set_next_entity

rb_eraserb_next update_stats_wait_end

yaffs_readpage_nolock yaffs_get_n_free_chunks

__copy_from_user

IRQ

avc_policy_seqno

u:_Z29dexParameterIteratorNextIndexP20DexParameterIterator

hrtimer_interrupt

ktime_get_update_offsets

__run_hrtimer

__remove_hrtimer

ttwu_do_wakeup.constprop.91

fsnotify

__srcu_read_lock__srcu_read_unlock

msecs_to_jiffies

notifier_call_chain

vfp_notifier

yaffs_check_alloc_available

yaffs_calc_checkpt_blocks_required

blk_finish_plug

blk_flush_plug_list

__switch_to

atomic_notifier_call_chain

__atomic_notifier_call_chain

rb_insert_color

handle_level_irq

handle_irq_event goldfish_mask_irq

yaffs_grab_chunk_cache

u:_Z16getPolicyProfilePK6Method

fput vfs_write

__fsnotify_parent do_sync_write

radix_tree_lookup_element

handle_irq_event_percpu

note_interruptgoldfish_timer_interrupt add_interrupt_randomness

pick_next_task_fair

clear_buddies

wakeup_preempt_entity

calc_delta_mine

check_preempt_curr

check_preempt_wakeup

timerqueue_del

set_next_buddy resched_task

radix_tree_preload

generic_file_aio_write

blk_start_plug generic_write_sync

idle_cpu rcu_irq_exit

yaffs_find_tnode_0 yaffs_find_chunk_in_groupyaffs_get_group_base

put_prev_task_fair

radix_tree_insert

cpu_set_reserved_ttbr0 qemu_trace_cs _test_and_set_bit rcu_sched_qs rcu_preempt_note_context_switch

rcu_preempt_running_reader rcu_preempt_cpu_qs

rcu_irq_enter

(b) System layer & kernel layer.

Fig. 4. Call graph of FileOutputStream.write().

1 0 0 0 4 0 0 0 7 0 0 0 1 0 0 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

Tim
ec

on
su

mp
tio

n(
ms

)

I t e r a t i o n t i m e s (w r i t e 2 5 6 b y t e s e a c h t i m e)

F i l e O u t p u t S t r e a m
B u f f e r e d O u t p u t S t r e a m
F i l e W r i t e r

Fig. 5. Comparison between different file writing functions.

FileWriter.write()

OutputstreamWriter.write()

OutputstreamWriter.convert()

CharsetEncoder.encode()

(a) FileWriter.write()

BufferedOputputStream.write()

System.arraycopy()

(b) BufferedOutputStrem.write()

Fig. 6. Data flow of two file writing functions.

struct their call graphs. The data flows of FileWriter.write()
and BufferedOutputStrem.write() are shown in Fig.6(a) and
Fig.6(b) with only key functions, respectively. The control
flow and data flow of FileOutputStream.write() are showed
in Fig.4. It shows that FileOutputStream invokes system call
write() through JNI bridge method writeBytes() in libcore/io/-
Posix.java to write data into the file directly each time.

The results of AndroiPerf help us learn that FileWriter
and BufferedOutputStream have data buffers and just store
data in their buffers when the buffers are not full. Therefore,
FileWriter and BufferedOutputStream have much higher effi-
ciency than FileOutputStream. We also found that FileWriter
needs to encode the data when the data is stored in buffer,
while BufferedOutputStream holds a buffer of arbitrary binary
data. Hence, the performance of FileWriter is a little bit worse
than that of BufferedOutputStream.

FileOutpuStream.write()

Posix.writeBytes()

sys_write()

Generic_file_buffered_write()

DVM layer

System layer

Kernel layer

Specific filesystem

SWI

sdcard

Data

Fig. 7. Major functions involved in file writing at different layers.

0.6098

0.497 0.4781

0.2517

0.0216

File
Out

put
Stre

am
.wr

ite

Pos
ix.w

rite
Byt

es wri
te

sys
_wr

ite

gen
eric

_fil
e_b

uffe
red

_wr
ite

0.0

0.2

0.4

0.6

Ex
ec

ut
io

n
D

ur
at

io
n

(m
s)

Fig. 8. The time consumptions of major functions involved in file writing
at different layers.

To evaluate the time consumption of functions on different
layers, we capture the execution time of functions at dif-
ference layers. The boundaries functions at each layer and
their relationship is shown in Fig. 7. Since the function
generic file buffered wite() allocates page cache and copies
data to the page cache, we take its execution time as the time
consumption of the filesystem. In this experiment, the app
writes 256 bytes data for 30 times and then we calculates the
mean execution time of each function. As shown in Fig.8, the
major time is consumed by functions at the DVM layer and
the system layer.

C. Case Study 2: Analyzing Packet Transmission Procedure

When studying popular network measurement tools, we find
that these tools can be divided into two major classes: those
working on the system layer (such as iperf [30], Network
Tools [31], OneProbe [32], etc.), and those working on the
DVM layer(such as speedtest [33], Internet Speed Test [34],
etc.). Only a few tools working in the kernel layer [35], [36].
To shed a light on the performance of different methods, we
use DatagramSocket to send a UDP packet from the DVM
and trace its data flow to find out the entries and exits of each
layer. The key functions traced are shown in Fig.9.

DatagramSocket.send()

 Posix.sendtoBytes()

 sento()

 sys_sendto()

dev_hard_start_xmit()

DVM layer

System layer

Kernel layer

Device driver

SWI

dev_queue_xmit()

Internet

UDP Packet

Fig. 9. Major functions involved in UDP packet transmission at different
layers.

Fig.10 illustrates the time consumption of each function. We
can see that more than the majority of the time are consumed
by DVM functions and native functions when a UDP packet is
sent out from DVM. The result suggests that when developing

0.8839

0.615

0.3879

0.1348
0.0556 0.0496

Dat
agr

am
Soc

ket
.sen

d

Pos
ix.s

end
toB

ytes sen
dto

sys
_se

ndt
o

dev
_qu

eue
_xm

it

dev
_ha

rd_
sta

rt_x
mit

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
D

ur
at

io
n

(m
s)

Fig. 10. The time consumptions of major functions involved in UDP packet
transmission at different layers.

smartphone-based measurement tools it would be better to
realize them in the kernel layer, such as using the toolkit
kTRxer [35], to avoid noise introduced by DVM and even
the native layer.

D. Overhead

In order to evaluate the overhead brought by AndroidPerf
(especially the dynamic taint analysis sub-system), we ran
benchmark tool Mobibench [37], which executes SQLite op-
erations, on AndroidPerf and unmodified Qemu, respectively.
As shown in Table IV, AndroidPerf incurs about 8 times
slow down when compared with unmodified Qemu on SQLite
operations, including 8 times slowdown on Insert, 9 times
slowdown on Update, and 5 times slowdown on Delete.

We also ran CF-Bench [38] on AndroidPerf and Qemu,
individually, and illustrate the results in Fig.11. Note that
the results of AndroidPerf are calculated according to the
performance of Qemu, which is taken as the benchmark.
In general, AndroidPerf can only achieve 20% of Qemu’s
performance. Moreover, native operations cause much more
slowdown than Java operations. The reason is that AndroidPerf
uses extended TaintDroid to perform taint analysis on Java
operations executed by DVM whereas the taint analysis on
the native layer and the kernel layer is conducted in Qemu at
the instruction level. Note that TaintDroid just introduces 14%
overhead with respect to the unmodified Android system [15]
while the instruction level tracer, such as the taint tracker in
DroidSope [16], can incur more than 11 times slowdown.
Fortunately, since AndroidPerf does not perform all taint
analysis at the instruction level, it will have better efficiency
than the taint tracker in DroidSope. Moreover, AndroidPerf
only outputs the collected information to log files after the
execution of certain operation or an app finishes and then
analyzes the log files, thus further reducing the overhead of
tracing information flows.

V. DISCUSSION

The major goal of AndroidPerf is to track function calls
and conduct dynamic taint analysis in the DVM layer, system
layer, and kernel layer. It also modifies Android’s profiling

7 . 0 %
1 0 %

1 5 %
3 3 %

8 . 0 %
3 0 %

1 7 %
5 . 0 %

4 4 %
6 . 0 %

3 8 %
1 2 %

2 2 %

N a t i v e M I P S
J a v a M I P S

N a t i v e M S F L O P S
J a v a M S F L O P S

N a t i v e M D F L O P S
J a v a M D F L O P S

N a t i v e M A L L O C S
N a t i v e M e m o r y R e a d

J a v a M e m o r y R e a d
N a t i v e M e m o r y W r i t e

J a v a M e m o r y W r i t e
N a t i v e D i s k R e a d
N a t i v e D i s k W r i t e

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

Fig. 11. CF Benchmark results.

TABLE IV
OVERLOAD COMPARISON BETWEEN ANDROIDPERF AND Qemu

ON SQLITE OPERATIONS

Operation SQLite.Insert SQLite.Update SQLite.Delete
AndroidPerf 22 TPS 29 TPS 48 TPS
QEMU 176 TPS 252 TPS 193 TPS

framework and adopts dynamic instrumentation to collect
performance data from different layers. Although selecting
functions for different purposes is out of the scope of this
paper, we will investigate approaches like SIF [39] to facilitate
users to select critical functions.

Since how to automatically drive apps to cover all paths
is still an open question, we will integrate AndroidPerf with
new testing systems like A3E [40] and Dynodroid [41] for
increasing the path coverage in future work.

VMI-based approaches have the same limitation of em-
ulating a real hardware environment [23]. In other words,
the emulator may miss some important information sources,
especially those from specific hardware. Moreover, apps may
differentiate between an emulator and a real smartphone
by exploiting their difference. We will explore virtualization
technology, such as Trustzone in ARM [42], to run the whole
system of AndroidPerf in a real smartphone.

AndroidPerf has not been tested on the new Android run-
time, ART, which became the default runtime since Android
5.0 [43]. We believe AndroidPerf can be extended to support
ART and will do it in future work, because apps will be
converted to native codes before execution by ART and
AndroidPerf can handle native codes.

VI. RELATED WORK

A. Profiling Android Applications

A number of systems have been designed to profile Android
apps for different purposes, such as identifying performance
issues [11], [44], detecting malware [15], [17], modeling
energy consumption [7], [8], etc. However, none of them
achieves the same functionality as AndroidPerf.

Google offers Traceview and dmtracedump to trace in-
voked functions and collect time spent in each function [44].
Although the trace logs can be generated by including the
Debug class in an app or using DDMS, Google recommends
the former to get more precise results [44]. In contrast,
AndroidPerf can trace function calls and conduct dynamic
taint analysis without modifying apps.

While some systems instrument apps and/or the system to
locate performance issues, they neither trace invoked functions
nor collect information from the system and the kernel, and
thus cannot reveal issues due to the underlying platform [5],
[6], [9], [10]. For example, to measure user-perceived trans-
action, Panappticon instruments event handlers, asynchronous
call interfaces, and the interprocess communication mecha-
nisms to log events [9]. Similarly, AppInsight instruments apps
for Windows Mobile to identify the critical execution path for
locating performance bottlenecks [5], [6], [10].

Some systems collect information from different sources to
profile apps or model energy consumptions [7], [8], [11]–
[14]. However, they neither track all function calls at dif-
ferent layers nor perform the dynamic taint analysis, and
thus cannot uncover issues due to the poor interactions be-
tween different layers. For example, ProfileDroid collects user-
generated events through adb, system calls through strace, and
network traffic through tcpdump to profile apps [11]. ARO
characterizes resource usage by correlating user input events
and network traffic [12]. QoE Doctor further correlates user
interaction events, network traffic, and RRC/RLC layer data
through QxDM to diagnose apps QoE [13]. To estimate energy
consumption, AppScope monitors an app’s hardware usage by
probing system calls relevant to hardware operations at the
kernel level [8], [14]. Being a fine-grained energy profiler,
Eprof collects DVM level function calls and system calls
by modifying Android framework [7]. If an app has native
components, Eprof requires linking it with the Android gprof
library [7]. Note that AndroidPerf can traces more functions
than system calls and differentiate them through taint analysis.

Although VARI profiler can trace invoked functions in the
DVM layer, system layer, and kernel layer, it does not perform
dynamic taint analysis and thus cannot track information flow
across different layers [45].

B. Dynamic Taint Analysis

Dynamic taint analysis [20] has been adopted to analyze
apps, such as detecting private information leakage [15], [18],
dissecting malware [16], [17], etc., and a few systems have
been released, such as TaintDroid [15], DroidScope [16],
and NDroid [18]. However, none of them can conduct the
cross-layer taint analysis like AndroidPerf. More precisely,
TaintDroid modifies DVM to track information flows within
DVM [15]. Some systems integrated TaintDroid with other
functionality, such as tracing APIs and system calls [17], [46].
Although DroidScope does not release its taint tracker, it pro-
vides a great framework to build dynamic taint analysis tools,
because it can reconstruct detailed information in Linux and
DVM through VMI [16]. NDroid, built on top of DroidScope,

can track information flows between the DVM layer and the
native layer [18]. However, NDroid only considers third-party
native libraries. Note that AndroidPerf conducts dynamic taint
analysis on all functions at different layers.

VII. CONCLUSION

To reveal hidden issues in apps due to the underlying
platform or poor interactions between different layers, it is de-
sirable to profile apps from all layers, including the DVM layer
covering apps and the Android framework, the system layer
containing system or third-party native libraries, and the kernel
layer comprising exported system calls and internal functions.
In this paper, we propose AndroidPerf, the first cross-layer
profiling system for Android apps. AndroidPerf consists of a
sub-system to perform cross-layer dynamic taint analysis and
a sub-system to conduct instrumentation on different layers.
After tackling a number challenging issues, we have realized
AndroidPerf in 9,125 lines of C/C++ and 1,016 lines of Python
scripts along with some modifications to Android’s framework.
The evaluation results through real case studies demonstrate
AndroidPerf’s effectiveness and efficiency.

VIII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their quality re-
views and suggestions. This work is supported in part by
the Hong Kong GRF (No. PolyU 5389/13E), the Nation-
al Natural Science Foundation of China (No. 61202396),
the PolyU Research Grant (G-UA3X), the Open Fund of
Key Lab of Digital Signal and Image Processing of Guang-
dong Province (2013GDDSIPL-04), and the Shenzhen C-
ity Special Fund for Strategic Emerging Industries (No. J-
CYJ20120830153030584).

REFERENCES

[1] I. Corporate, “Android and ios squeeze the competition, swelling to 96%
of the smartphone operating system market for both 4q14 and cy14,”
http://goo.gl/8fFSu1, Feb. 2015.

[2] AppBrain, “Number of android applications,” http://goo.gl/TOX992,
Mar. 2015.

[3] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proc. KDD, 2014.

[4] C. Qian, X. Luo, L. Yu, and G. Gu, “Vulhunter: toward discovering
vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1, 2015.

[5] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild.” in Proc. OSDI, 2012.

[6] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan, “Time-
card: Controlling user-perceived delays in server-based mobile applica-
tions,” in Proc. SOSP, 2013.

[7] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof,”
in Proc. EuroSys, 2012.

[8] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: applica-
tion energy metering framework for android smartphones using kernel
activity monitoring,” in Proc. USENIX ATC, 2012.

[9] L. Zhang, D. Bild, R. Dick, Z. Mao, and P. Dinda, “Panappticon: event-
based tracing to measure mobile application and platform performance,”
in Proc. CODES+ISSS, 2013.

[10] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan, “Automatic
and scalable fault detection for mobile applications,” in Proc. MobiSys,
2014.

[11] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: Multi-
layer profiling of android applications,” in Proc. MobiCom, 2012.

[12] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, “Pro-
filing resource usage for mobile applications: a cross-layer approach,”
in Proc. ACM Mobisys, 2011.

[13] Q. Chen, H. Luo, S. Rosen, Z. Mao, K. Iyer, J. Hui, K. Sontineni, and
K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated ui
control and cross-layer analysis,” in Proc. ACM IMC, 2014.

[14] S. Lee, C. Yoon, and H. Cha, “User interaction-based profiling system
for android application tuning,” in Proc. Ubicomp, 2014.

[15] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones,” in Proc. OSDI, 2010.

[16] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing OS and
Dalvik semantic views for dynamic Android malware analysis,” in Proc.
USENIX Security, 2012.

[17] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic large-
scale dynamic analysis of android applications,” in Proc. CODASPY,
2013.

[18] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking information
flows through jni in android applications,” in Proc. DSN, 2014.

[19] S. Ratabouil, Android NDK Beginner’s Guide. Packt Publishing, 2012.
[20] E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in Proc. IEEE SP, 2010.

[21] “Arm exceptions,” http://www.ethernut.de/en/documents/arm-
exceptions.html, 2009.

[22] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX ATC, FREENIX Track, 2005.

[23] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Proc. NDSS, 2003.

[24] S. A. Siegfried Rasthofer and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks,” in Proc.
NDSS, 2014.

[25] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin, “make it work, make it right, make it fast building a platform-
neutral whole-system binary analysis platform,” in Proc. ACM ISSTA,
2012.

[26] “strace,” http://sourceforge.net/projects/strace.
[27] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu, “Kernel probes

(kprobes),” https://www.kernel.org/doc/Documentation/kprobes.txt.
[28] “Processor core register summary,” http://goo.gl/Cem8bp.
[29] “Exception vectors,” http://goo.gl/1MMK1z.
[30] “iperf for android,” http://goo.gl/BcTP9U.
[31] “Network tools,” http://goo.gl/7qdq1e.
[32] X. Luo, E. Chan, and R. Chang, “Design and implementation of TCP

data probes for reliable and metric-rich network path monitoring,” in
Proc. USENIX Annual Tech. Conf., 2009.

[33] “Speedtest.net,” http://goo.gl/7ZyoY2.
[34] “Internet speed test,” http://goo.gl/dlVRNV.
[35] L. Xue, X. Luo, and Y. Shao, “ktrxer: A portable toolkit for reliable

internet probing,” in Proc. IEEE IWQoS, 2014.
[36] D. Turull, “pktgen,” http://people.kth.se/ danieltt/pktgen/.
[37] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won, “Androstep: Android

storage performance analysis tool.” in Proc. European Workshop on
Mobile Engineering, 2013.

[38] “Cf-bench,” http://bench.chainfire.eu/, 2013.
[39] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Sif: A selective

instrumentation framework for mobile applications,” in Proc. MobiSys,
2013.

[40] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proc. OOPSLA, 2013.

[41] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proc. ESEC/FSE, 2013.

[42] ARM Ltd., “Trustzone,” http://goo.gl/AjRTgD.
[43] A. Frumusanu, “A closer look at android runtime (art) in android l.”
[44] “Profiling with traceview and dmtracedump,” http://goo.gl/QZRXEW.
[45] T. H. Su, H. J. Tsai, K. H. Yang, P. C. Chang, T. F. Chen, and Y. T. Zhao,

“Reconfigurable vertical profiling framework for the android runtime
system,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 13, 2014.

[46] “Droidbox,” https://code.google.com/p/droidbox/.

	Introduction
	Design of AndroidPerf
	Overview
	Dynamic Taint Analysis Sub-system
	Constructing Control Flow and Data Flow Information.
	Instrumentation Sub-system

	Implementation of AndroidPerf
	DVM Tracer
	JNI Hook Engine
	System Layer Tracer
	Kernel Layer Tracer
	Taint Propagation Engine

	Evaluation
	Cross-layer Call Graphs
	Case Study 1: Comparing File Writing Functions
	Case Study 2: Analyzing Packet Transmission Procedure
	Overhead

	Discussion
	Related work
	Profiling Android Applications
	Dynamic Taint Analysis

	Conclusion
	Acknowledgment
	References

